首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: With the popularity of complex, physically based hydrologic models, the time consumed for running these models is increasing substantially. Using surrogate models to approximate the computationally intensive models is a promising method to save huge amounts of time for parameter estimation. In this study, two learning machines [Artificial Neural Network (ANN) and support vector machine (SVM)] were evaluated and compared for approximating the Soil and Water Assessment Tool (SWAT) model. These two learning machines were tested in two watersheds (Little River Experimental Watershed in Georgia and Mahatango Creek Experimental Watershed in Pennsylvania). The results show that SVM in general exhibited better generalization ability than ANN. In order to effectively and efficiently apply SVM to approximate SWAT, the effect of cross‐validation schemes, parameter dimensions, and training sample sizes on the performance of SVM was evaluated and discussed. It is suggested that 3‐fold cross‐validation is adequate for training the SVM model, and reducing the parameter dimension through determining the parameter values from field data and the sensitivity analysis is an effective means of improving the performance of SVM. As far as the training sample size, it is difficult to determine the appropriate number of samples for training SVM based on the test results obtained in this study. Simple examples were used to illustrate the potential applicability of combining the SVM model with uncertainty analysis algorithm to save efforts for parameter uncertainty of SWAT. In the future, evaluating the applicability of SVM for approximating SWAT in other watersheds and combining SVM with different parameter uncertainty analysis algorithms and evolutionary optimization algorithms deserve further research.  相似文献   

2.
本文针对滇池日益严重的水污染现状,根据云南昆明西苑隧道断面2004年-2010年的监测资料,建立了基于BP神经网络的主要污染指标预测模型,并对其进行训练检验,研究结果表明:独立样本中pH、溶解氧、氨氮、高锰酸盐浓度的预测值与监测值的线性相关系数分别为0.952、0.967、0.945、0.936。结果证明该模型预测精度满足要求,通过准确地预测湖泊水污染物可以为治理湖泊营养化和综合利用水资源、规划管理、决策提供重要的科学依据。  相似文献   

3.
A river system is a network of intertwining channels and tributaries, where interacting flow and sediment transport processes are complex and floods may frequently occur. In water resources management of a complex system of rivers, it is important that instream discharges and sediments being carried by streamflow are correctly predicted. In this study, a model for predicting flow and sediment transport in a river system is developed by incorporating flow and sediment mass conservation equations into an artificial neural network (ANN), using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. The ANN river system model is applied to modeling daily discharges and annual sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China. By the comparison of calculated and observed data, it is demonstrated that the ANN technique is a powerful tool for real-time prediction of flow and sediment transport in a complex network of rivers. A significant advantage of applying the ANN technique to model flow and sediment phenomena is the minimum data requirements for topographical and morphometric information without significant loss of model accuracy. The methodology and results presented show that it is possible to integrate fundamental physical principles into a data-driven modeling technique and to use a natural system for ANN construction. This approach may increase model performance and interpretability while at the same time making the model more understandable to the engineering community.  相似文献   

4.
周红艳  张文阳  李娜 《四川环境》2012,31(3):111-115
在中温且控制pH值条件下,对脂肪类单基质和城市污水厂剩余污泥进行混合厌氧消化试验。基于多元回归原理和BP人工神经网络原理,对其建立产气量预测模型。由实验数据计算得出:两个阶段多元回归模型的预测平均准确率分别为75.69%和79.29%;BP神经网络模型的预测平均准确率为79.05%。通过对比两种模型的预测结果可知,两种模型都有较高的预测准确率,但BP模型的预测准确率更高,更适用于混合厌氧消化产气量预测。  相似文献   

5.
作者基于B-P算法的人工神经网络,对污水处理系统的性能作了预测和评价,并通过所建立的一个生物转盘处理系统的人工神经网络预测模型实例,验证了人工神经网络用于污水处理系统性能评价方面的可行性与准确性。  相似文献   

6.
Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor’s relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, “distance from fault” had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.  相似文献   

7.
太湖生态模拟系统构建与应用   总被引:2,自引:0,他引:2  
湖泊生态系统模拟在湖泊富营养化研究中发挥着越来越重要的作用,是湖泊生态生态系统管理的重要手段。湖泊生态系统模型及其相关软件的发展经历了从简单的回归模型、单一的营养盐平衡模型到目前复杂的生态系统动力学模型。本文详细的介绍了湖泊生态模拟的原理、结构框架设计、功能、运行环境及参数等特性,借助太湖有关资料建立了太湖生态系统模拟模型,并对该模型进行了验证分析,验证结果表明该模型在太湖有很好的适应性。  相似文献   

8.
To date, several methods have been proposed to explain the complex process of air pollution prediction. One of these methods uses neural networks. Artificial neural networks (ANN) are a branch of artificial intelligence, and because of their nonlinear mathematical structures and ability to provide acceptable forecasts, they have gained popularity among researchers. The goal of our study as documented in this article was to compare the abilities of two different ANNs, the multilayer perceptron (MLP) and radial basis function (RBF) neural networks, to predict carbon monoxide (CO) concentrations in the air of Pardis City, Iran. For the study, we used data collected hourly on temperature, wind speed, and humidity as inputs to train the networks. The MLP neural network had two hidden layers that contained 13 neurons in the first layer and 25 neurons in the second layer and reached a mean bias error (MBE) of 0.06. The coefficient of determination (R2), index of agreement (IA), and the Nash–Scutcliffe efficiency (E) between the observed and predicted data using the MLP neural network were 0.96, 0.9057, and 0.957, respectively. The RBF neural network with a hidden layer containing 130 neurons reached an MBE of 0.04. The R2, IA, and E between the observed and predicted data using the RBF neural network were 0.981, 0.954, and 0.979, respectively. The results provided by the RBF neural network had greater acceptable accuracy than was the case with the MLP neural network. Finally, the results of a sensitivity analysis using the MLP neural network indicated that temperature is the primary factor in the prediction of CO concentrations and that wind speed and humidity are factors of second and third importance when forecasting CO levels.  相似文献   

9.
冯琨  张永丽  戴沂伽 《四川环境》2011,30(2):125-130
在对四川省成都市的水资源进行综合规划与评价的过程中,通过主成分因子分析可知人口、GDP、给排水管道长度等因素对需水量预测有较大影响,如何建立这些因素与需水量之间的数学关系是预测工作的重点。本文将介绍通过MATLAB数学分析软件建立BP神经网络预测模型,并对模型的预测结果进行评价。  相似文献   

10.
神经网络在空气污染预报中的应用研究   总被引:1,自引:0,他引:1  
苏静芝  秦侠  雷蕾  姚小丽 《四川环境》2008,27(2):98-101
空气污染预报是一项复杂的系统工程,是当今环境科学研究的热点,国内外已有将神经网络法应用于大气污染预报的研究。本论文以PM2.5为例,采用伦敦市PM2.5的小时平均浓度数据,使用传统的BP神经网络建立预报模型,定量预测伦敦市PM2.5的小时平均浓度,探讨了大气污染预报网络的建模过程中,扩大样本集、去除样本集数据噪声和在输入向量中加入气象变量等因素对建模所产生的影响。最后得出结论,适当的选择样本集、气象变量,有利于提高所建立网络模型的预测精度。  相似文献   

11.
12.
危险废物对环境或者人体健康会造成有害影响,有效地预测其产量是优化管理和合理处置的重要依据。以2008~2016年成都市危险废物产生量为基础,通过数据带入和整合及综合各参数因子的影响,利用人工神经网络模型预测方法客观反映并预测成都市危废产量的变化趋势。结果表明该模型预测2017~2018年成都市危险废物年产量分别达到24.46万t和26.88万t,模拟精度偏差低。因此,人工神经网络模型可以作为一种预测危险废物产生量的工具,其预测结果可以为职能部门提供决策参考。  相似文献   

13.
基于灰色神经网络的能源消费组合预测模型   总被引:5,自引:0,他引:5  
组合预测对于信息不完备的复杂经济系统具有一定的实用性。鉴于能源消费系统的复杂性和非线性特征,利用我国能源消费的历史数据,采用灰色预测的GM(1,1)、无偏GM(1,1)和pGM(1,1)3种模型与人工神经网络进行优化组合,建立了灰色神经网络的能源消费组合预测模型,实证分析结果获得了更为精确的预测效果,可以作为能源消费预测的有效工具。同时,能源消费的预测结果也表明今后必须以节能为主导思想,努力建设资源节约型社会和环境友好型社会。  相似文献   

14.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   

15.
选取8个经济指标,运用人工神经网络(ANN)的理论和方法,构建应用最为广泛的BP网络模型,对2004年绥化市10个县市的经济发展水平进行了评价。结果表明,绥化市县域经济发展水平差异十分显著,其中肇东等3县域属于高水平类型,海伦等4个县域为中等类型,明水等3个县域属于落后类型。  相似文献   

16.
由于评价因子与环境质量标准之间的模糊关系,导致传统的评价模型结果的不确定性。本文将模糊理论和神经网络模型相结合,利用模糊理论的隶属度反映各因子的质量相对状态,从而更精确地识别模糊性。通过模糊神经网络模型对环境质量标准样本的学习和测试,得出评价等级,并与模糊综合评价方法进行对比,实验结果表明,模糊神经网络模型用于环境质量评价是可行的,且比模糊综合评价方法更为客观、合理。  相似文献   

17.
Particulate matter (PM), along with other air pollutants, pose serious hazards to human health. The Artificial Neural Network (ANN) is a branch of artificial intelligence that has an ability to make accurate predictions. In this article, the authors describe such methods and how historical data on air quality, moisture, wind velocity, and temperature in Shahr‐e Ray City, located at the southern tip of Tehran, was used to train an ANN to provide accurate predictions of PM concentrations. The availability of such predictions can offer significant assistance to those who are working to reduce air pollution.  相似文献   

18.
In this work, time series neural networks were used to predict the occurrence of toxic cyanobacterial blooms in Crestuma Reservoir, which is an important potable water supply for the Porto region, located in the north of Portugal. These models can potentially be used to provide water treatment plant operators with an early warning for developing cyanobacteria blooms. Physical, chemical, and biological parameters were collected at Crestuma Reservoir from 1999 to 2002. The data set was then divided into three independent time series, each with a fortnightly periodicity. One training series was used to “teach” the neural networks to predict results. Another series was used to verify the results, and to avoid over-fitting of the data. An additional independently collected data series was then used to test the efficacy of the model for predicting the abundance of cyanobacteria. All of the models tested in this study incorporated a prediction time (look-ahead parameter) equal to the sampling interval (two weeks). Various lag periods, from 2 to 52 weeks, were also investigated. The best model produced in this study provided the following correlations between the target and forecast values in the training, verification, and validation series: 1.000 (P = 0.000), 0.802 (P = 0.000), and 0.773 (P = 0.001), respectively. By applying this model to the three-year data set, we were able to predict fluctuations in cyanobacteria abundance in the Crestuma Reservoir, with a high level of precision. By incorporating a lag-period of eight weeks, we were able to detect secondary fluctuations in cyanobacterial abundance over the annual cycle.  相似文献   

19.
20.
魏星  易杨柳 《四川环境》2008,27(5):31-34
对武汉市某小型浅水人工湖泊水质进行一年的理化监测并分析,结果显示:COD、BOD5均有季节性变化的规律;气温的变化影响湖水及底泥中微生物的活性;天然降水量不同对湖水稀释程度不同;底泥的污染物释放量受温度影响;该水体可生化性差。据此,提出保护湖水的措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号