首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

Purpose and aim

Amido Black 10B is an azo dye with very high toxicity. It is now established that the dye damages the reparatory system of humans and also causes skin and eye irritations. It is therefore considered worthwhile to develop a systematic procedure to eradicate Amido Black 10B from its aqueous solution using a waste material as adsorbent. Therefore, adsorption of the dye is achieved using hen feathers as adsorbent.

Materials and methods

Before using hen feather as adsorbent material, it is washed, cut into small pieces and activated using hydrogen peroxide. Detailed chemical and physical analysis of hen feather was also carried out by known analytical techniques. The adsorptive removal of the dye was made through batch experiments in 100 mL airtight flasks. The experiment is divided in three major categories, the preliminary investigations, adsorption isotherm measurements, and kinetic studies.

Results

Under preliminary investigations, the effect of pH, temperature, concentration of dye, and amount of adsorbent were carried out. It was found that with increase in pH, the adsorption of Amido Black 10B decreases; while with increasing the amount of hen feather, it increases. The isothermal studies indicate that the ongoing adsorption process is endothermic in nature and obeys Langmuir, Freundlich, Tempkin, and DubininRadushkevitch (D–R) adsorption isotherm models. The Gibb’s free energy and entropy of the adsorption were also calculated. The D–R isotherm model verified the involvement of chemisorption during the adsorption. The kinetic measurements indicate operation of pseudo second order process during the adsorption and dominance of film diffusion mechanism at all the temperatures.

Conclusions

The developed method is highly efficient and ecofriendly. It also ascertains a necessitous utilization of waste material hen feather for the benefit of the society.  相似文献   

2.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   

3.

Purpose

This study has the objective to evaluate the lead(II) removal capacity of hydroxyapatite powder synthesized by microwave as an alternative method to decrease production time and cost.

Methods

Hydroxyapatite (HA) was synthesized by a microwave-assisted precipitation method using calcium nitrate and ammonium hydrogen phosphate as calcium and phosphorus sources, respectively. X-ray diffraction and Fourier transform infrared results clearly revealed that the resulting powder was HA with high purity and crystallinity. The obtained powder was used for the removal of lead(II) from aqueous solutions. The effects of pH, amount of adsorbent, initial lead(II) concentration, and contact time were studied in batch experiments.

Results

In the adsorption experiments, maximum lead(II) retention was obtained at pH 6. Adsorption equilibrium was established after 40 min. It was found that the adsorption of lead(II) on HA was correlated well (R 2?=?0.958) with the Freundlich equation for the concentration range studied. Both ion exchange and adsorption process were thought to exist in the removal process.

Conclusions

This study indicates that easily and rapidly synthesized HA by microwave-assisted precipitation method could be used as an efficient adsorbent for removal of lead(II) from aqueous solutions.  相似文献   

4.

Background

In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

Review

This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

Conclusion

Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.  相似文献   

5.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   

6.

Introduction

The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses.

Materials and methods

Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation.

Results

The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV?CVisible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses.

Conclusion

The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.  相似文献   

7.

Purpose

Removal of malathion from agricultural runoff was studied using novel copper-coated chitosan nanocomposite (CuCH)??a biopolymeric waste obtained from marine industry.

Methods

Synthesis and characterization of the adsorbent using different spectral techniques like Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer, Emmett, and Teller surface analyzer have been carried out. Equilibrium studies have been carried out to optimize the dose rate, pH, and the reaction time. Parathion and methyl parathion removal were also evaluated by CuCH in the batch mode. Using gas chromatography?Cmass spectrometry (GC?CMS) and FTIR studies suitable mechanism for adsorption has been suggested.

Results

The particle size of the adsorbent ranged from 700 to 750?nm. The surface area was found to be 20?m2?g-1 with a pore volume of 0.11?cc?g-1. The maximum adsorption capacity of malathion by CuCH was found to be 322.6?±?3.5?mg?g-1 at an optimum pH of 2.0. Presence of copper ions enhanced the adsorption capacity of the adsorbent. The reaction was found to follow pseudo second-order kinetics with a rate constant of 0.53?g?mg-1?min-1. Evidence from FTIR indicated that copper ions form a dithionate complex with malathion during the adsorption stage. The adsorbent was found to remove malathion completely from spiked concentration of 2?mg?l-1 in the agricultural run-off samples. It was also found that CuCH removed other organophospurous pesticides like methyl parathion and parathion under prevailing conditions.

Conclusions

The results indicated that CuCH could be applied for the removal of organophosphorous pesticides.  相似文献   

8.

Purpose

Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-FeII and AC/N-FeIII), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions.

Method

The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors.

Results

Maximum removals of phosphate are obtained in the pH range of 3.78?C6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-FeII and AC/N-FeIII is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon.

Conclusions

Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-FeII has a higher phosphate removal capacity than AC/N-FeIII, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol?1 for AC/N-FeII and AC/N-FeIII, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

9.

Purpose

The aim of this work was to improve the ability of electro-Fenton technique for the remediation of wastewater contaminated with synthetic dyes using a model azo dye such as Azure B.

Methods

Batch experiments were conducted to study the effects of main parameters, such as dye concentration, electrode surface area, treatment time, and voltage. In this study, central composite face-centered experimental design matrix and response surface methodology were applied to design the experiments and evaluate the interactive effects of the four studied parameters. A total of 30 experimental runs were set, and the kinetic data were analyzed using first- and second-order models.

Results

The experimental data fitted to the empirical second-order model of a suitable degree for the maximum decolorization of Azure B by electro-Fenton treatment. ANOVA analysis showed high coefficient of determination value (R 2?=?0.9835) and reasonable second-order regression prediction. Pareto analysis suggests that the variables, time, and voltage produce the largest effect on the decolorization rate.

Conclusion

Optimum conditions suggested by the second-order polynomial regression model for attaining maximum decolorization were dye concentration 4.83?mg/L, electrode surface area 15?cm2, voltage 14.19?V, and treatment time of 34.58?min.  相似文献   

10.

Purpose

Chitosan with nylon 6 membranes was evaluated as adsorbents to remove copper and cadmium ions from synthetic industrial wastewater.

Methods

Chitosan and nylon 6 with glutaraldehyde blend ratio with (1:1+Glu, 1:2+Glu, and 2:1+Glu) have been prepared and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. Characterization of the synthesized membrane has been done with FTIR, XRD, TGA/DTA, DSC, and SEM. Chemical parameters for quantities of adsorption of heavy metal contamination have been done and the kinetics of adsorption has also been carried out.

Results

The optimal pH for the removal of Cd(II) and Cu(II) using chitosan with nylon 6. Maximum removal of the metals was observed at pH 5 for both the metals. The effect of adsorbent dose also has a pronounced effect on the percentage of removal of the metals. Maximum removal of both the metals was observed at 5 g/100 ml of the adsorbent.

Conclusion

Copper and cadmium recovery is parallel at all time. The percentage of removal of copper increased with increase in the pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing contact time from 0 to 360 min and then reaches equilibrium after 360 min; the equilibrium constant for copper and cadmium ions is more or less the same for the adsorption reaction.  相似文献   

11.

Background

The adsorption characteristics of Pb2+ ions from aqueous solutions onto calix[4]naphthalene have been investigated.

Method

Calix[4]naphthalene was prepared by the condensation of 1-naphthol and formaldehyde (1:2) in presence of hydrochloric acid at 80°C. The effect of various operation parameters, such as solution pH, initial metal ion concentration, contact time, and temperature, on the adsorption capacity of calix[4]naphthalene for Pb2+ have been investigated.

Result

Experimental results showed that the adsorption of Pb2+ ions increased with the increase in solution pH and temperature. Langmuir and Freundlich isotherms models were used to describe the adsorption behavior of Pb2+ by calix[4]naphthalene. Equilibrium data fitted well with the Langmuir isotherm model and the maximum adsorption capacity of calix[4]naphthalene for Pb2+ at 30°C was found to be 29.15 mg g?1. Kinetic studies indicated that the adsorption followed pseudo-second order model and the thermodynamic studies revealed that the adsorption process was spontaneous and endothermic in nature. The obtained results demonstrated that calix[4]naphthalene can be used as an effective adsorbent for Pb2+ ions removal from water.  相似文献   

12.
Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR.
Graphical abstract ?
  相似文献   

13.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

14.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

15.

Background and purpose

Regeneration of spent activated carbon assumes paramount importance in view of its economic reuse during adsorptive removal of organic contaminants. Classical thermal, chemical, or electrochemical regeneration methods are constrained with several limitations. Microbial regeneration of spent activated carbon provides a synergic combination of adsorption and biodegradation.

Methods

Microorganisms regenerate the surface of activated carbon using sorbed organic substrate as a source of food and energy. Aromatic hydrocarbons, particularly phenols, including their chlorinated derivatives and industrial waste water containing synthetic organic compounds and explosives-contaminated ground water are the major removal targets in adsorption?Cbioregeneration process. Popular mechanisms of bioregeneration include exoenzymatic hypothesis and biodegradation following desorption. Efficiency of bioregeneration can be quantified using direct determination of the substrate content on the adsorbent, the indirect measurement of substrate consumption by measuring the carbon dioxide production and the measurement of oxygen uptake. Modeling of bioregeneration involves the kinetics of adsorption/desorption and microbial growth followed by solute degradation. Some modeling aspects based on various simplifying assumptions for mass transport resistance, microbial kinetics and biofilm thickness, are briefly exposed.

Results

Kinetic parameters from various representative bioregeneration models and their solution procedure are briefly summarized. The models would be useful in predicting the mass transfer driving forces, microbial growth, substrate degradation as well as the extent of bioregeneration.

Conclusions

Intraparticle mass transfer resistance, incomplete regeneration, and microbial fouling are some of the problems needed to be addressed adequately. A detailed techno-economic evaluation is also required to assess the commercial aspects of bioregeneration.  相似文献   

16.

Purpose

Owing to the present complexity and difficulty of concentrated dye wastewater treatment, this work aimed to synthesize a reproducible waste-sorbing material for the treatment of wastewater by forming the dye-conjugating complex hybrid.

Methods

The inorganic/organic hybridization was applied to prepare the objective material by immobilizing waster dye-Mordant blue 9 (MB) with barium sulfate (BaSO4). The composition and pattern of the formed material were determined by spectrometry and characterized by SEM and XRD, and their formation process was clarified. The adsorption of cationic dye-basic blue BO (BB) and copper ion was investigated..

Results

The hybrid of MB alone into growing BaSO4 formed the pineapple-like particles while that of the MB/BB-conjugating complex was the rhombus material. The adsorption of BB on the MB–BaSO4 hybrid was probably attributed to ion-pair equilibrium and that of Cu2+ may result from the complexation. The treatment of dye and heavy metal wastewaters indicated that the MB hybrid material removed 99.8% BB and 97% Cu2+ and the dye-conjugating hybrid with growing BaSO4 100% MB, 99.5% BB, and 44% Cu2+.

Conclusion

The waste MB–BaSO4 hybrid material is efficient to treat cationic dye and Cu2+ wastewater. The dye-conjugating hybridization method is the first to be advanced for in situ wastewater treatment, and it showed a combined effect for the removal of both organic dyes and heavy metals.  相似文献   

17.

Purpose

Feathers are one of the most abundant bioresources. They are discarded as waste in most cases and could cause environmental pollution. On the other hand, keratin constituted by amino acids is the main component of feathers. In this article, we reported on biorefined feathers and integrants and application of degraded products.

Materials and methods

The fermentation of whole chicken feathers with Stenotrophomonas maltophilia DHHJ in a scale-up of a 5-L bioreactor was investigated in this article. The fermentation process was controlled at 0.08 MPa pressure, 2.5 L/min airflow, and 300 rpm as 100% oxygen saturation level, 40°C, and pH 7.8.

Results

Feathers were almost completely degraded in the tested fermentation reaction with the following conditions: 80 g of whole feathers in 3 L fermentation broth for 72 h, seed age of 16 h, 100 mL inoculation amount, and 50% oxygen saturation level. The degraded products contain 397.1 mg/L soluble protein that has mass weight ranging from 10 to 160 kD, 336.9 mg/L amino acids, and many kinds of metal ions. The fermentation broth was evaluated as leaf fertilizer and found to increase plant growth to 82% or 66% for two- or fourfold dilutions, respectively. In addition, in a hair care assay, the broth showed a hair protective function by increasing weight, flexibility, and strength of the treated hair.

Conclusions

The whole feathers were degraded completely by S. maltophilia DHHJ. The degraded product includes many factors to life, such as peptides, amino acids, and mineral elements. It could be applied as leaf fertilizer and hair care product.  相似文献   

18.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

19.

Introduction

Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water.

Methods

The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics.

Results

The increase of TiO2 dosage from 40 to 70?mg/L enhanced the degradation. At doses around 100?mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500?nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500?nm, the degradation rates were not significantly changed.

Conclusions

For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.  相似文献   

20.

Introduction

In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO2 thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics.

Methods

TiO2 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy.

Results

The annealed TiO2 thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO2 electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir?CHinshelwood model, with first-order kinetics.

Conclusions

The feasibility of dye discoloration on TiO2 thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E AP) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50?min) produced 80% discoloration with an external anodic potential of 0.931?V and a flow rate of 12.2?mL?min?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号