首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a subtropical Hawaiian ecosystem, phytoplanton size structure analyses (November–December, 1980) showed that ultraplankton (>3μm), nanoplankton (>20μm) and netplankton (>20μm) accounted for ca. 80, 98, and 2% of total chlorophyll standing stock, respectively, on the basis of chlorophyll. Similar trends were evident, for other biomass indices (e.g. cell numbers, total cell volume, ATP, particulate organic carbon, particulate organic nitrogen). The ultraplankton fraction consisted primarily of small flagellates (1 to 3 μm diam) and coccoid cells (?1 μm diam); the 3 to 20 μm fraction was represented by dinoflagellates, coccolithophores, diatoms, and chrysophytes; and the netplankton fraction consisted principally of dinoflagellates and centric diatoms. Community photosynthesis had a size distribution similar to that of biomass. Sinking rates for the 3 μm, 3 to 20 μm, and >20 μm fractions averaged 0.0, 0.09, and 0.29m d?1, respectively. The absence of measurable sinking rates for the ultraplankton, together with the relative abundance of biomass in this fraction, result in very small phytoplankton losses due to sinking in such subtropical surface waters.  相似文献   

2.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

3.
Regions of high primary production along the oligotrophic west coast of Australia between 34 and 22°S in May–June 2007 (midway through the annual phytoplankton bloom) were found around mesoscale features of the Leeuwin Current. At 31°S, an anticyclonic eddy-forming meander of the Leeuwin Current had a mixed layer depth of >160 m, a depth-integrated chlorophyll a (Chl a)-normalised primary production of 24 mg C mg Chl a ?1 day?1 compared to the surrounding values of <18 mg C mg Chl a ?1 day?1. In the north between 27 and 24°S, there were several stations in >1,000 m of water with a shallow (<100 m) and relatively thin layer of high nitrate below the mixed layer but within the euphotic zone. These stations had high primary production at depths of ~100 m (up to 7.5 mg C m?3 day?1) with very high rates of production per unit Chl a (up to 150 mg C mg Chl a ?1 day?1). At 27–24°S, the majority of the phytoplankton community was the ubiquitous tropical picoplankters, Synechococcus and Prochlorococcus. There was a decline in the dominance of the picoplankters and a shift towards a more diverse community with more diatoms, chlorophytes, prasinophytes and cryptophytes at stations with elevated production. Photosynthetic dinoflagellates were negligible, but heterotrophic dinoflagellate taxa were common. Haptophytes and pelagophytes were also common, but seemed to contribute little to the geographical variation in primary production. The mesoscale features in the Leeuwin Current may have enhanced horizontal exchange and vertical mixing, which introduced nitrate into the euphotic zone, increasing primary production and causing a shift in phytoplankton community composition in association with the annual winter bloom.  相似文献   

4.
氮、磷营养元素是湖泊生态系统中极其重要的生态因子,它们以不同形态存在于湖泊水体中,表现出不同的地球化学行为和生态效应,从而支配着湖泊生态系统的生产力水平和湖泊富营养化进程。通过设置3个断面9个采样站14个采样点,研究了程海湖水体中氮、磷营养元素的形态与分布,结果表明:2009年11月23日—2010年2月20日,以铜绿微囊藻(Microcystis aeruginosa Kutz.)为主的程海冬季水华暴发期间,总氮质量浓度0.540~3.906 mg.L-1,平均0.836 mg.L-1;总磷质量浓度0.036~0.166 mg.L-1,平均0.061 mg.L-1。其中,溶解态氮、溶解态磷分别为61.7%和50.8%。溶解态氮以有机氮为主,溶解态磷则以无机磷为主。水华期间生物可直接利用氮质量浓度0.118 mg.L-1;生物可直接利用磷质量浓度0.021 mg.L-1,分别占总氮、总磷质量浓度的14.1%和34.4%,显示出此特定时期,氮的消耗速度较磷快。氮素、磷素及其赋存形态在程海的时间分布上有不同的节奏;水平分布差异不明显;垂直分布在水表层至亚底层的水柱中差异也不明显,而在湖底层最高。  相似文献   

5.
A straightforward method for calculating selectivity coefficients (Wij) of predation from raw data, mortality rates of prey, filtering rates, feeding rates and electivity indices is derived. Results from a comparison of selectivity coefficients for the copepod Diaptomus oregonensis grazing under a number of experimental conditions suggest that Wij's for size-selective feeding are invariant, a conclusion also supported by the leaky-sieve model. Recommendations are made on how to use Wij's in linear and nonlinear feeding constructs for zooplankton and other animals.  相似文献   

6.
Microzooplankton grazing and selectivity of phytoplankton in coastal waters   总被引:16,自引:0,他引:16  
Microzooplankton grazing activity in the Celtic Sea and Carmarthen Bay in summer 1983 and autumn 1984 was investigated by applying a dilution technique to high-performance liquid chromatographic (HPLC) analysis of photosynthetic pigments in phytoplankton present within natural microplankton communities. Specific grazing rates on phytoplankton, as measured by the utilisation of chlorophyll a, were high and varied seasonally. In surface waters during the autumn, grazing varied between 0.4 d-1 in the bay and 1.0 d-1 in the Celtic Sea, indicating that 30 and 65% of the algal standing stocks, respectively, were grazed daily. Grazing rates by microzooplankton within the thermocline in summer suggest that 13 to 42% of the crop was grazed each day. Microzooplankton showed selection for algae containing chlorophyll b, in spite of a predominance of chlorophyll c within the phytoplankton community. Changes in taxon-specific carotenoids indicated strong selection for peridinin, lutein and alloxanthin and selection against fucoxanthin and diadinoxanthin. This indicates a trophic preference by microzooplankton for dinoflagellates, cryptophytes, chlorophytes and prasinophytes and selection against diatoms, even when the latter group forms the largest crop within the phytoplankton. Interestingly, those algal taxa preferentially grazed also showed the highest specific growth-rates, suggesting a dynamic feed-back between microzooplankton and phytoplankton. Conversion of grazing rates on each pigment into chlorophyll a equivalents suggests firstly, that in only one experiment could all the grazed chlorophyll a be accounted for by the attrition of other chlorophylls and carotenoids, and secondly that in spite of negative selection, a greater mass of diatoms could be grazed by microzooplankton than any other algal taxon. The former may be due either to a fundamental difference in the break-down rates of chlorophyll a compared to other pigments, or to cyanobacteria forming a significant food source for microzooplankton. In either case, chlorophyll a is considered to be a good measure of grazing activity by microzooplankton.  相似文献   

7.
《Chemistry and Ecology》2007,23(5):393-407
The massive red tide bloom of Chattonella antiqua that occurred in Alexandria waters during late August/early September 2006 was monospecific, of very high density, and of wide spatial distribution, and was accompanied by mass fish and invertebrates mortalities. During the bloom, surface water temperature ranged between 26.5 and 28.5 °C and salinity between 23 and 27 psu. The bloom started under very high nitrate and ammonia levels; where the uptake of ammonia seemed to be faster than that of nitrate, and the bloom seemed to avoid the copepod grazing. Mass fish and invertebrates mortality was observed. Few cells of Heterosigma species have been reported for the first time in the Alexandria waters. Several environmental constraints (including physical factors), nutrient loading, copepod grazing and comparison with other data for C. antiqua blooms in Alexandria waters are also discussed.  相似文献   

8.
We investigated the influence of bacteria and metazooplankton on the production of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) during blooms of Emiliania huxleyi (Lohmann) Hay and Mohler in seawater mesocosms. The phytoplankton succession was marked by the rapid collapse of an initial Skeletonema costatum (Greville) Cleve bloom followed by a small E. huxleyi bloom. The collapse of the diatom bloom was accompanied by an increase in concentrations of dissolved DMSP (DMSPd) and bacterial abundance and activity (as determined by the thymidine incorporation technique). The increase in bacterial activity was followed by a rapid decrease in DMSPd concentrations which remained low for the rest of the experiment, even during the subsequent collapse of the E. huxleyi blooms. The absence of DMSPd and DMS peaks during the declining phase of the E. huxleyi blooms was attributed to the high bacterial activity prevailing at that time. The influence of metazooplankton grazing on DMSP and DMS production was investigated by adding moderate (24 mg dry weight m-3) and high (520 mg dry weight m-3) concentrations of Copepodite Stage V and adults of Calanus finmarchicus to two of four filtered (200 m mesh net) enclosures during the E. huxleyi blooms. The addition of C. finmarchicus, even in high concentrations, had no apparent effect on the dynamics of E. huxleyi, suggesting that the copepods were not grazing significantly on nanophytoplankton. The addition of copepods in high concentrations favored an accumulation of chlorophyll a and particulate DMSP. These results suggest that copepods were preying on the herbivorous microzooplankton which, in turn, was controlling the biomass of nanophytoplankton. DMS production was also enhanced in the enclosure with maximum metazooplankton biomass, suggesting that the grazing of C. finmarchicus on microzooplankton containing DMSP may contribute to DMS production. These results provide strong support to the emerging idea that bacteria and metazooplankton grazing play a dominant role in determining the timing and magnitude of DMS pulses following phytoplankton blooms.  相似文献   

9.
Recent improvements in the analytical determination of nitrate and nitrite allow measurements of nanomolar concentrations in nitrogen-depleted surface waters, revealing variability not previously observable. The new methods allow direct observation of net nitrate consumption and production measured as changes in nitrate concentration over time in incubated samples of seawater. We find that nitrate concentrations in nitrogendepleted surface waters show regional differences, and sometimes diel differences. The variability in nitrate concentration reflects differences in atmospheric inputs, in physical forcing, as well as in the biological processes of nitrate uptake and nitrification. Examples are shown from the Southern California Bight (1986–1987), the equatorial Pacific (February–March, 1988), and the eastern subtropical Atlantic (March–April, 1989).  相似文献   

10.
Phytoplankton production, standing crop, and loss processes (respiration, sedimentation, grazing by zooplankton, and excretion) were measured on a daily basis during the growth, dormancy and decline of a winter-spring diatom bloom in a large-scale (13 m3) marine mesocosm in 1987. Carbonspecific rates of production and biomass change were highly correlated whereas production and loss rates were unrelated over the experimental period when the significant changes in algal biomass characteristic of phytoplankton blooms were occurring. The observed decline in diatom growth rates was caused by nutrient limitation. Daily phytoplankton production rates calculated from the phytoplankton continuity equation were in excellent agreement with rates independently determined using standard 14C techniques. A carbon budget for the winter bloom indicated that 82.4% of the net daytime primary production was accounted for by measured loss processes, 1.3% was present as standing crop at the end of the experiment, and 16.3% was unexplained. Losses via sedimentation (44.8%) and nighttime phytoplankton respiration (24.1%) predominated, while losses due to zooplankton grazing (10.7%) and nighttime phytoplankton excretion (2.8%) were of lesser importance. A model simulating daily phytoplankton biomass was developed to demonstrate the relative importance of the individual loss processes.  相似文献   

11.
R. P. Harris 《Marine Biology》1994,119(3):431-439
Grazing and faecal pellet production by the copepods Calanus helgolandicus and Pseudocalanus elongatus, feeding on the coccolithophore Emiliania huxleyi, were measured under defined laboratory conditions, together with the chemical characteristics and sinking rates of the faecal pellets produced. Ingestion rates of both copepods were equivalent at comparable cell concentrations, the relationship between ingestion rate (I, cells copepod-1 h-1) and food concentration (C, cells ml-1), being I=0.558C for both species. P. elongatus produced a larger number of smaller faecal pellets than C. helgolandicus, but egested a larger volume of material per individual. Only between 27 and 50% of the ingested coccolith calcite was egested in the faecal pellets, and it is possible that acid digestion in the copepod gut is responsible for these considerable losses. Average sinking rates of faecal pellets containing E. huxleyi coccoliths, produced by both species, were >100 m d-1. The implications of the quantitative laboratory estimates for the vertical flux of inorganic carbon are considered using recently studied shelf-break and oceanic E. huxleyi blooms in the N. E. Atlantic as examples.  相似文献   

12.
Mass encystment and sinking of dinoflagellates during a spring bloom   总被引:10,自引:0,他引:10  
The decline of a spring bloom dominated by dinoflagellates and the mass sedimentation of dinoflagellate cysts was documented in a coastal area of the northern Baltic Sea, SW Finland in 1983. The exceptionally large spring phytoplankton bloom was observed in early May. After depletion of nitrate phytoplankton biomass declined rapidly. The bloom was followed by intense sedimentation of spherical cysts and of organic matter at the end of May. These cysts were presumably hypnozygotes of Peridinium hangoei Schiller. Sedimentation of dinoflagellate cysts was estimated to correspond to ca. 45% of the maximum sedimentation of particulate organic carbon at this time, although most of the dinoflagellate biomass disintegrated already in the water column and was deposited as organic detritus or washed away by advection. It is concluded that the life cycle strategies of the dominant vernal phytoplankton species have a major impact on the sedimentation of the spring bloom.  相似文献   

13.
M. J. Perry 《Marine Biology》1972,15(2):113-119
This paper describes a fluorometric method for assaying low levels of the enzyme alkaline phosphatase in seawater. The assay is based on the hydrolysis of the monophosphate ester bond of 3-0-methylfluorescein phosphate. This enzyme is synthesized by many microorganisms when phosphate becomes limiting. Alkaline phosphatase activity was detected in phytoplankton from the nutrient-impoverished surface waters of the subtropical Central North Pacific Ocean. The presence of naturally occurring phosphatase suggests that phosphorus may be limiting to phytoplankton growth in these waters. The phytoplankton in water samples lacking enzyme activity at the time of collection produced phosphatase within 1 to 2 days of incubation at in situ temperatures.  相似文献   

14.
Toxic cyanobacterial blooms, dominated by Nodularia spumigena, are a recurrent phenomenon in the Baltic Sea during late summer. Nodularin, a potent hepatotoxin, has been previously observed to accumulate on different trophic levels, in zooplankton, mysid shrimps, fish as well as benthic organisms, even in waterfowl. While the largest concentrations of nodularin have been measured from the benthic organisms and the food web originating from them, the concentrations in the pelagic organisms are not negligible. The observations on concentrations in zooplankton and planktivorous fish are sporadic, however. A field study in the Gulf of Finland, northern Baltic Sea, was conducted during cyanobacterial bloom season where zooplankton (copepod Eurytemora affinis, cladoceran Pleopsis polyphemoides) and fish (herring, sprat, three-spined stickleback) samples for toxin analyses were collected from the same sampling areas, concurrently with phytoplankton community samples. N. spumigena was most abundant in the eastern Gulf of Finland. In this same sampling area, cladoceran P. polyphemoides contained more nodularin than in the other areas, suggesting that this species has a low capacity to avoid cyanobacterial exposure when the abundance of cyanobacterial filaments is high. In copepod E. affinis nodularin concentrations were high in all of the sampling areas, irrespective of the N. spumigena cell numbers. Furthermore, nodularin concentrations in herring samples were highest in the eastern Gulf of Finland. Three-spined stickleback contained the highest concentrations of nodularin of all the three fish species included in this study, probably because it prefers upper water layers where also the risk of nodularin accumulation in zooplankton is the highest. No linear relationship was found between N. spumigena abundance and nodularin concentration in zooplankton and fish, but in the eastern area where the most dense surface-floating bloom was observed, the nodularin concentrations in zooplankton were high. The maximum concentrations in zooplankton and fish samples in this study were higher than measured before, suggesting that the temporal variation of nodularin concentrations in pelagic communities can be large, and vary from negligible to potentially harmful.  相似文献   

15.
Natural populations of phytoplankton were collected near the Bay of Bourgneuf, France, in spring 1982, and were subjected to natural surface irradiance outdoors. They exhibited exponential growth on time scales of a week, but significant decreases in biomass indicators such as chlorophyll a and particulate nitrogen were observed during daytime. At night, these decreases were more than compensated by increases in the same biomass variables, which could double over 12 h of darkness. These features are characteristic of phytoplankton populations in surface waters which cannot escape high irradiances, and may be representative of situations in incubation bottles held at fixed depths near the surface. Under such conditions, a decrease in biomass during daytime should not necessarily be interpreted as irreversible damage unless growth measurements are carried out over the following night hours to check for possible recovery.  相似文献   

16.
A distinctive chlorophyll maximum was detected around 60-m depth in the western North Pacific Ocean and the South China Sea, and almost 55% of the total chlorophyll in the entire water column was found within 50 m around the subsurface chlorophyll maximum (SCM) layer. More than 70% of the chlorophyll was contained in picoplankton which passed through a 3-m Nuclepore but retained on 0.22-m Millipore filters at the SCM as well as the surface layers. By transmission electron microscopic observations, the picoplankton were identified as aChlorella-like coccoid green alga having a section size of 1.2 to 1.5 m and cyanobacteria of 0.5 to 2 m. No obvious difference in these two dominant groups was observed in the SCM and the surface samples except in numerous and heavily stacked thylakoids in the former samples.  相似文献   

17.
The spring bloom in seasonally stratified seas is often characterized by a rapid increase in photosynthetic biomass. To clarify how the combined effects of nutrient and light availability influence phytoplankton composition in the oligotrophic Gulf of Aqaba, Red Sea, phytoplankton growth and acclimation responses to various nutrient and light regimes were recorded in three independent bioassays and during a naturally-occurring bloom. We show that picoeukaryotes and Synechococcus maintained a “bloomer” growth strategy, which allowed them to grow quickly when nutrient and light limitation were reversed. During the bloom picoeukaryotes and Synechococcus appeared to have higher P requirements relative to N, and were responsible for the majority of photosynthetic biomass accumulation. Following stratification events, populations limited by light showed rapid photoacclimation (based on analysis of cellular fluorescence levels and photosystem II photosynthetic efficiency) and community composition shifts without substantial changes in photosynthetic biomass. The traditional interpretation of “bloom” dynamics (i.e., as an increase in photosynthetic biomass) may therefore be confined to the upper euphotic zone where light is not limiting, while other acclimation processes are more ecologically relevant at depth. Characterizing acclimation processes and growth strategies is important if we are to clarify mechanisms that underlie productivity in oligotrophic regions, which account for approximately half of the global primary production in the ocean. This information is also important for predicting how phytoplankton may respond to global warming-induced oligotrophic ocean expansion.  相似文献   

18.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

19.
There is a need to explore, in an integrated and statistical manner, how the number of species, relative abundance, species composition and life-cycle stages of elasmobranchs in nearshore waters vary among habitat types and during the year. Therefore, four sites in a large marine embayment, each representing a different habitat type, were sampled at regular intervals. These sites were: (1) unvegetated, with no vegetation within at least 200 m; (2) unvegetated, immediately adjacent to sparse mangroves; (3) unvegetated, immediately adjacent to dense mangroves; and (4) vegetated, with seagrass (Posidonia australis) throughout and in the vicinity. Gill netting caught 10 shark species (5 families), 5 ray species (4 families) and 12 teleost species (10 families). Carcharhinus cautus, which contributed approximately 60% to the numbers of elasmobranchs caught, completed its life cycle in nearshore, shallow waters. Negaprion acutidens, Carcharhinus brevipinna, Carcharhinus limbatus and Rhizoprionodon acutus used these waters as a nursery area. C. cautus was caught mainly in the unvegetated sites, particularly in those near mangroves. N. acutidens was caught entirely in unvegetated sites, while R. acutus, C. brevipinna and Chiloscyllium punctatum were caught predominantly or exclusively in seagrass. The mean number of species and mean catch rate of elasmobranchs were greatest for the seagrass site and least for the unvegetated site with no vegetation within at least 200 m and were significantly less for the latter site than for the unvegetated site immediately adjacent to dense mangroves (P<0.05). The numbers of species and catch rates of elasmobranchs were significantly greater in summer and autumn than in winter (P<0.05) and, in the case of number of species, also than in spring (P<0.05). We conclude that the spatial and food resources in the nearshore, shallow waters of Shark Bay are partitioned among elasmobranch species, thus reducing the potential for competition among these species for the resources in those waters.Communicated by G.F. Humphrey, Sydney  相似文献   

20.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号