首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we verified a 3D computational fluid dynamics model for vertical slot fish-passes (VSFs) that employs the renormalization-group k-epsilon turbulence model (RNG KE) and the volume of fluid (VOF) method. We compared model calculations with experiments in two pool designs T1 and T2 of an experimental VSF and with 2D calculations using the shallow water equations (SWE) and the standard k-epsilon (2D SKE) model. Calculations of the 3D model showed (1) good agreement with experiments and 2D calculations in predicting mean flow velocities, (2) better performance in the determination of the water surface in the VSF, which is attributed to the accurate VOF method, (3) superior prediction of turbulence characteristics than the 2D model, which is due to the 3D RNG KE model that overcomes the problem of turbulence overestimation of the 2D SKE model, and to the fact that the 3D model takes into account the 3D features of the flow in the fish pass. Moreover, the present 3D calculations showed that the common assumptions in VSFs that (1) the flow is 2D, and (2) the simulation of 4 pools of a VSF is sufficient to obtain satisfactory results, are not always valid. Flow can be considered as 2D only in pool design T2 and for certain geometries and flow characteristics in pool design T1; while, eventually, all the pools of a fish pass need to be modeled to ensure accurate results. Finally, the present work illustrates the need to perform fish experiments simultaneously with flow experiments.  相似文献   

2.
This study characterizes the flow field at a spawning site located at the shelf break of a Caribbean island for the Epinephelus guttatus (red hind grouper) in relation to this species spawning events. In order to understand the oceanographic dynamics targeted by the fishes, current measurements were profiled throughout the water column for almost a year at the spawning site. The characteristics of the flow field and its evolution after spawning were investigated by using a numerical ocean model that resolved the observed tide and simulated the island scale flow where passive, neutrally buoyant virtual particles were released for 10 days to trace the flow pathways.Observed currents during the spawning period revealed that the flow was vertically sheared, to the south and weakest at the bottom, and to the west or east at the surface. The tidal analysis revealed that the flow at the time of spawning was directed across and on-shelf, although weaker close to the bottom. The model showed that the initial on-shelf transport was counteracted by the bottom flow directed to the shelf break, where virtual particles were entrained by the downwelling flow. A significant percent of particles resided less than two hundred meters deep, in the vicinity of the chlorophyll maximum and returned to the shelf break, close to the release location within 8-10 days. This journey was largely controlled by the timing between downwelling at the spawning site and upwelling further east at the shelf break, which was driven by the coupling between wind and tide induced vertical movements at the shelf break and deeper. The release location, vertical rotation of its flow field, and its transport properties were shown to be relatively resilient to the passage of transient sub-mesoscale eddies as well as to acute mesoscale flow reversals, suggesting that physical retention is maximized in the area surrounding the spawning site.  相似文献   

3.
《Ecological modelling》1999,114(2-3):251-274
An analysis of the extended path and flow structure of a six compartment steady-state oyster reef model was conducted. The extended path and flow structure were analyzed in the context of a refined canonical path classification system based on the systems theory methods of environ and network unfolding analyses. A computer implementation of an operational path classification system facilitated investigation of a finite portion (path length ≤17 arcs) of the direct and indirect path structure of the oyster reef model. Important results of the path structure analysis include: (1) few simple paths and large numbers of compound paths enumerated; (2) dominance of path numbers by subsequent passage terminal cycle paths; (3) structural evidence in support of feedback control in ecosystems; (4) results provide evidence by analogy to support the hypothesis of network homogenization first described using the systems analysis methods of environ analysis and network unfolding; (5) constancy of the pattern of origin–destination path counts with increasing path length; (6) importance of nonliving compartments in the extended path structure of ecosystems. Simultaneous path and flow analysis of the oyster reef model assessed the flow contributions of the fundamental path categories for this model using a modification of a path-based network unfolding method. First passage paths contribute most of the flow; however, multiple passage cyclic paths also provide a large (22%) flow contribution. Because of cycling in the system, the numerous long paths in the extended path structure of this ecosystem model are significant in its function as represented by the flows. These results provide microscopic evidence for the macroscopic results of environ analysis that implicate cycling as a key ecosystem attribute in the mechanisms of holistic system determination. The principles enunciated here for a model with a low cycling index (11%) carry over to, and would be even more significant for, models with high cycling indexes. These results also serve to form a link between the extended structure of food webs and their functioning as represented by energy-matter flows. The present analysis demonstrates that extended path structure, and the component articulation from which it is generated, have significant consequences for ecosystem function.  相似文献   

4.
Fish migrate to spawn, feed, seek refuge from predators, and escape harmful environmental conditions. The success of upstream migration is limited by the presence of barriers that can impede the passage of fish. We used a spatially explicit modeling strategy to examine the effects of barriers on passage for 21 native and non-native migratory fish species and the amount of suitable habitat blocked for each species. Spatially derived physical parameter estimates and literature based fish capabilities and tolerances were used to predict fish passage success and habitat suitability. Both the fish passage and the habitat suitability models accurately predicted fish presence above barriers for most common, non-stocked species. The fish passage model predicted that barriers greater than or equal to 6 m block all migratory species. Chinook salmon (Oncorhynchus tshawytscha) was expected to be blocked the least. The habitat suitability model predicted that low gradient streams with intact habitat quality were likely to support the highest number of fish species. The fish passage and habitat suitability models were intended to be used by environmental managers as strategy development tools to prioritize candidate dams for field assessment and make decisions regarding the management of migratory fish populations.  相似文献   

5.
Three-dimensional hydrodynamic modeling of the Chicago River, Illinois   总被引:2,自引:1,他引:1  
We present and describe results from a three-dimensional model applied to the Chicago River under a wet weather condition. Chicago River is an integral part of Chicago, the third largest city in United States, for recreational, commercial and industrial purposes. Although the flow in the Chicago River is supposed to be from north to south, the flow acquires a three-dimensional nature at various points in the river. The reasons for the three dimensionality of the flow can be attributed to the dynamic boundary conditions generated by combined sewer overflow (CSO) events during wet weather conditions, as well as the presence of confluences of various branches of the river with creeks and slips. This work presents the hydrodynamic application and validation of a three dimensional numerical model, which was used to simulate the flow in the Chicago River for a period of 8?days in September of 2008, during which the torrential rains in the city of Chicago led to intense CSO events. The numerical model used for the aforementioned exercise is the Environmental Fluid Dynamics Code (EFDC) which solves the three dimensional vertically hydrostatic, free surface, turbulence averaged equations of motions for a variable density fluid. The results obtained by the numerical model were validated with the help of stage values obtained from the USGS gauging station [Station No. 05536123] present inside the domain of interest. It was estimated that during the storm September 2008, several billion gallons of water were discharged into Lake Michigan from the Chicago River Controlling Works to prevent city flooding. The 3D model also provides a tool for the management of the waterways, in particular for future analysis of different alternatives being considered to reverse the Chicago River once again with the goal of preventing the passage of invasive species (e.g. Asian carp) towards the Great Lakes.  相似文献   

6.
The coherent structure in near-bed turbulent boundary layer of vortex chamber, particularly the bursting events and their associated shear stresses play the main role in sediment flushing process and consequently the trap efficiency of the vortex settling chamber. Hence, three-dimensional velocity measurements were made at 48 points near the bed of physical model of vortex chamber by using Micro-ADV. The pattern of sediment deposition at the bed of vortex settling chamber reveals three separate regions formed by three predominant currents of inlet flow, flushing flow and outlet over flow. Additionally, due to the instability and three-dimensional nature of the bursting events near the bed of chamber, the new method of Markovian–Octant analysis was applied to study the different classes of near-bed stable shear stresses of vortex chamber in three dimensions. Moreover, the role of each class of stable shear stresses on Sediment transport mechanism at the bed of vortex chamber is investigated.  相似文献   

7.
Forks in the Road: Choices in Procedures for Designing Wildland Linkages   总被引:5,自引:0,他引:5  
Abstract:  Models are commonly used to identify lands that will best maintain the ability of wildlife to move between wildland blocks through matrix lands after the remaining matrix has become incompatible with wildlife movement. We offer a roadmap of 16 choices and assumptions that arise in designing linkages to facilitate movement or gene flow of focal species between 2 or more predefined wildland blocks. We recommend designing linkages to serve multiple (rather than one) focal species likely to serve as a collective umbrella for all native species and ecological processes, explicitly acknowledging untested assumptions, and using uncertainty analysis to illustrate potential effects of model uncertainty. Such uncertainty is best displayed to stakeholders as maps of modeled linkages under different assumptions. We also recommend modeling corridor dwellers (species that require more than one generation to move their genes between wildland blocks) differently from passage species (for which an individual can move between wildland blocks within a few weeks). We identify a problem, which we call the subjective translation problem, that arises because the analyst must subjectively decide how to translate measurements of resource selection into resistance. This problem can be overcome by estimating resistance from observations of animal movement, genetic distances, or interpatch movements. There is room for substantial improvement in the procedures used to design linkages robust to climate change and in tools that allow stakeholders to compare an optimal linkage design to alternative designs that minimize costs or achieve other conservation goals.  相似文献   

8.
Metachronal swimming in Antarctic krill: gait kinematics and system design   总被引:1,自引:0,他引:1  
Metachronal swimming, in which adjacent appendages stroke in sequence, is widespread among crustaceans inhabiting the transitional flow realm in which both viscosity and inertia effects are important. However, the design and operation of this propulsion system in response to various hydrodynamic, energetic, and behavioral needs have not been well investigated. We examine free-swimming Antarctic krill (Euphausia superba) as a model species and identify three distinct behavioral swimming gaits. The pleopod kinematics of these gaits, hovering, fast-forward swimming, and upside-down swimming, are quantified via image analysis of high-speed video. Pleopod stroke amplitude and frequency were found to vary significantly among these swimming modes. In order to increase swimming speed, krill were found first to increase stroke amplitude and secondarily to increase beat frequency. The kinematics of these distinct swimming modes provide insight as we consider multi-appendage metachronal swimming from a design standpoint. The ratio of the distance between adjacent appendage bases and appendage length is identified as a key parameter in metachrony, the value of which is constrained to a narrow range for a wide variety of species.  相似文献   

9.
The curvature-driven secondary flow in sinuous submarine channels has been a subject of considerable interest and controversy. Here, results from numerical model studies involving saline flow in laboratory-scale channels are presented. A 3D finite volume model of density and turbidity currents is used and simulations are run with different inflow discharges and channel-axis slopes. The simulation results show strong influence of bend wave length, channel gradient, confinement and cross sectional shape on the structure of secondary flow in submarine channels. Major findings are: (i) reversal of secondary flow in submarine channels is strongly associated with a tight bend characterized by a smaller wave length to width ratio or larger wave number, (ii) for the same inflow condition and planform characteristics, a trapezoidal channel cross section is more favorable to secondary flow reversal than a rectangular cross section, (iii) lateral convection resulting from the interaction between in-channel and overbank flows leads to the reversal of secondary flow in an unconfined channel at a lower channel slope than in a confined channel with the same dimensions, (iv) flow discharge has only nominal effect on the secondary flow in submarine channels.  相似文献   

10.
Large losses of habitat could be caused by land use change that disrupts the dispersal networks used by migratory species. We assessed the relative losses of habitat for diadromous fish (i.e., those migrating between sea and freshwater) due to physical barriers, degradation of migratory passage associated with catchment land use, and site-scale land use characteristics on the West Coast, South Island, New Zealand. Fish occurrence, land use data, and river network models were analyzed in a GIS and subjected to a three-level hierarchical analysis. To identify accessible habitat not restricted by physical barriers, we used the migratory distance and maximum downstream slope encountered to identify accessible sites in least-impacted catchments and applied the results to all catchments within the study area. For two fish species, banded kokopu (Galaxias fasciatus) and koaro (G. brevipinnis), sites modeled as accessible using logistic regression in least-impacted catchments were then used to assess the impacts of catchment-scale deforestation and downstream land uses on habitat loss. Finally, sites not restricted by physical barriers or land-use-related impacts on migratory passage were used to model the effects of local land use. The models indicated that koaro and banded kokopu potentially had access to 28,000 km and 5300 km, respectively, of the 40,600 km of streams within the study area. Impacts due to intensive agricultural land use downstream in catchments affecting migratory passage were predicted to reduce the accessible habitats for koaro and banded kokopu by 55% and 70%, respectively. Local land use further reduced koaro and banded kokopu habitats to 70% and 90%, respectively, of total accessible habitat. Habitat lost through disruption of the dispersal network was disproportionately large because potentially useable habitat was rendered inaccessible.  相似文献   

11.
We describe two applications of a recently introduced system for very precise, continuous measurement of water oxygen saturation. Oxygen microoptodes (based on the dynamic fluorescence quenching principle) with a tip diameter of ~50 µm, an eight-channel optode array, an intermittent flow system, and online data registration were used to perform two types of experiments. The metabolic activity of Antarctic invertebrates (sponges and scallops) was estimated in respiration experiments, and, secondly, oxygen saturation inside living sponge tissue was determined in different flow regimes. Even in long-term experiments (several days) no drift was detectable in between calibrations. Data obtained were in excellent correspondence with control measurements performed with a modified Winkler method. Antarctic invertebrates in our study showed low oxygen consumption rates, ranging from 0.03-0.19 cm3 O2 h-1 ind.-1. Oxygen saturation inside living sponge specimens was affected by flow regime and culturing conditions of sponges. Our results suggest that oxygen optodes are a reliable tool for oxygen measurements beyond the methodological limits of traditional methods.  相似文献   

12.
The Axios (Vardar) River originates from the south west part of Yugoslavia, transverses Greece, and discharges into the Thermaikos bay in the north Aegean Sea.

The proton induced X-ray emission (PIXE) method with external beam was used for the elemental analysis of water and sediment samples, while measurements of water temperature, dissolved oxygen content, conductivity, pH, and the water flow were made in situ. Water samples were also analysed for total phosphates, nitrates, chlorophyll, and BOD. The data collected for a 16-month period indicate that the Axios River is polluted as far as the metal content is concerned; its primary productivity is low and it is slightly enriched during its course into the Greek territory.  相似文献   

13.
A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity: $\hbox {Fr}_{1} = 1.02$ and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material ( $\hbox {d}_{50} \approx 13~\upmu \hbox {m}$ ) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 min after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.  相似文献   

14.
In open channel, canals and rivers, a rapid increase in flow depth will induce a positive surge, also called bore or compression wave. The positive surge is a translating hydraulic jump. Herein new experiments were conducted in a large-size rectangular channel to characterise the unsteady turbulent properties, including the coupling between free-surface and velocity fluctuations. Experiments were repeated 25 times and the data analyses yielded the instantaneous median and instantaneous fluctuations of free-surface elevation, velocities and turbulent Reynolds stresses. The passage of the surge front was associated with large free-surface fluctuations, comparable to those observed in stationary hydraulic jumps, coupled with large instantaneous velocity fluctuations. The bore propagation was associated with large turbulent Reynolds stresses and instantaneous shear stress fluctuations, during the passage of the surge. A broad range of shear stress levels was observed underneath the bore front, with the probability density of the tangential stresses distributed normally and the normal stresses distributed in a skewed single-mode fashion. Maxima in normal and tangential stresses were observed shortly after the passage of a breaking bore roller toe. The maximum Reynolds stresses occurred after the occurrence of the maximum free-surface fluctuations, and this time lag implied some interaction between the free-surface fluctuations and shear stress fluctuations beneath the surge front, and possibly some causal effect.  相似文献   

15.
A number of experimental studies on submerged canopy flows have focused on fully-developed flow and turbulent characteristics. In many natural rivers, however, aquatic vegetation occurs in patches of finite length. In such vegetated flows, the shear layer is not formed at the upstream edge of the vegetation patch and coherent motions develop downstream. Therefore, more work is neededz to reveal the development process for large-scale coherent structures within vegetation patches. For this work, we considered the effect of a limited length vegetation patch. Turbulence measurements were intensively conducted in open-channel flows with submerged vegetation using Particle Image Velocimetry (PIV). To examine the transition from boundary-layer flow upstream of the vegetation patch to a mixing-layer-type flow within the patch, velocity profiles were measured at 33 positions in a longitudinal direction. A phenomenological model for the development process in the vegetation flow was developed. The model decomposed the entire flow region into four zones. The four zones are the following: (i) the smooth bed zone, (ii) the diverging flow zone, (iii) the developing zone and (iv) the fully-developed zone. The PIV data also confirmed the efficiency of the mixing-layer analogy and provided insight into the spatial evolution of coherent motions.  相似文献   

16.
In this study, a three-dimensional model was used to numerically study the buoyant flow, along with its mixing characteristics, of heated water discharged from the surface and submerged side outfalls in shallow and deep water with a cross flow. Hydraulic experimental data were used to evaluate the applicability of the model. The simulation results agree well with the experimental results, particularly, the jet trajectories, the dimensions of the recirculating zone, and the distribution of the dimensionless excess temperature. The level of accuracy of the simulation results of the present study is nearly identical to that of the results conducted by McGuirk and Rodi (1978). If the heated water is discharged into shallow water where the momentum flux ratio and the discharge densimetric Froude number are high, the submerged discharge method is better than the surface discharge method in terms of the scale of the recirculating zone and the minimum dilution. In deep water, where the momentum flux ratio and discharge densimetric Froude number are low, however, the submerged discharge method had few advantages. In shallow water, the discharge jet is deflected by the ambient cross flow, while forcing the ambient flow to bend towards the far bank for the full depth. For a submerged discharge in shallow water, the recirculating zone is the largest in the lowest layer but becomes smaller in the upper layer. As the water depth increases, the ambient flow goes over the jet and diminishes the blocking effect, thereby decreasing the bending of the jet.  相似文献   

17.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

18.
Life history theory predicts fish assemblage response to hydrologic regimes   总被引:1,自引:0,他引:1  
Mims MC  Olden JD 《Ecology》2012,93(1):35-45
The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.  相似文献   

19.
The callianassid shrimp Nihonotrypaea petalura (Stimpson, 1860) is a common member on boulder beaches in Japanese waters. Its burrow morphology was investigated, based on 28 resin casts collected from a steeply sloping beach with dense boulders and 30 from a more gently sloping beach with less dense boulders in Ariake Sound, southern Japan. The structure and dimensions of the burrows from the two beaches were basically the same, and thus a combined mean value could be given to most of their constituent elements. In its entire dimensions, the burrow is greater in lateral extent than depth, with a mean maximum horizontal extension of 145 mm and a mean maximum depth of 119 mm for the shrimp with a mean total length of 31.8 mm. The burrow winds along boulders or cobbles and consists of, from top to bottom, a single surface opening with an ejected mound, a top shaft leading to the uppermost chamber at a mean depth of 48–56 mm, a passage with a regular cross section that is wider than that of the top shaft, and bulbous chambers (mean no.=4.7) with an irregular cross section associated with branches (mean no. per burrow=1.2). Bulbous chambers are much larger than the uppermost chamber and are usually connected by passages, with some directly attached to each other. The combined architecture of these features is unique and relatively simple among the burrows of all callianassid species, the majority of which inhabit bare soft sediments. The structure and function of the N. petalura burrow are discussed in relation to lifestyle.Communicated by T. Ikeda, Hakodate  相似文献   

20.
This study is considered as a completion for the carried out previous research on the Egyptian northern coast near Port Said. An evaluation was carried out for the purpose of analyzing satellite measured wave data, or carrying out preliminary evaluations for the study area, in the Nile delta coast near Damitta. The available offshore historical significant wave heights from altimeter measurements are used in this research for the period from 2005 to 2008. In this study waves were transformed from the offshore area to nearshore, sediment transport volumes were evaluated by applying and adjusting some of the practical formulae, which are considered reasonable for this area. The study domain dimensions are 50 km long offshore and 15 km wide alongshore. Wave nearshore transformation is carried out by using the mathematical Simulating WAves Nearshore model (SWAN) based on seasonal/directional bases. Two seasons are considered in the analysis, which are both winter and summer, to represent the mean seasons of the year. The three formulae, which are CERC, van Rijn and Boer and Galvin for sediment transport evaluation are applied in the study area. The reference values were applied for comparison were checked. The obtained rough evaluations were considered acceptable and can be roughly applied for both research and engineering purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号