首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m3, treated 0.65 m3 sanitary wastewater at ambient temperature in 8-h cycles. Three impeller types were assessed for each reactor configuration: flat-blade turbine impeller, 45°-inclined-blade turbine impeller and helix impeller, as well as two agitation rates: 40 and 80 rpm, resulting in a combination of six experimental conditions. In addition, the ASBR was also operated at 20 rpm with a flat-blade turbine impeller and the AnSBBR was operated with a draft tube and helix impeller at 80 and 120 rpm. To quantify how impeller type and agitation rate relate to substrate consumption rate, results obtained during monitoring at the end of the cycle, as well as the time profiles during a cycle were analyzed. Increasing agitation rate from 40 rpm to 80 rpm in the AnSBBR improved substrate consumption rate whereas in the ASBR this increase destabilized the system, likely due to granule rupture caused by the higher agitation. The AnSBBR showed highest solids and substrate removal, highest kinetic constant and highest alkalinity production when using a helix impeller, 80 rpm, and no draft tube. The best condition for the ASBR was achieved with a flat-blade turbine impeller at 20 rpm. The presence of the draft tube in the AnSBBR did not show significant improvement in reactor efficiency. Furthermore, power consumption studies in these pilot scale reactors showed that power transfer required to improve mass transfer might be technically and economically feasible.  相似文献   

2.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   

3.
This work presents an analysis of a stirred anaerobic sequencing discontinuous reactor with different substrate feeding strategies resulting in batch, fed-batch/batch and fed-batch operating modes. The reactor, containing granulated biomass, was fed with approximately 2.0L of synthetic domestic wastewater with Chemical Oxygen Demand of nearly 500 mg/L per cycle and operated at 30 degrees C and 50 rpm. Three feeding strategies with a total cycle time of 6 h, including 30-min settling, were adopted: batch mode with a fill cycle of 6 min, a fed-batch/batch mode with fill cycles of 60, 120 and 240 min and fed-batch mode with a fill cycle of 320 min. The system attained average non-filtered and filtered substrate removal efficiency of 78 and 84%, respectively, for all operating conditions, presenting good stability, solid retention and no granule break-up. A first order kinetic model with a residual organic matter concentration was proposed to analyze the influence of the feeding strategy on the performance during a cycle and bicarbonate alkalinity and total volatile acids concentration profiles were also quantified in order to verify the transient stability behavior.  相似文献   

4.
An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.  相似文献   

5.
The operation of modern horizontal axis wind turbine (HAWT) includes a number of important factors, such as wind power (P), power coefficient (CP), axial flow induction factor (a), rotational speed (Ω), tip speed ratio (λ), and thrust force (T). The aerodynamic qualities of these aspects are evaluated and discussed in this study. For this aim, the measured data are obtained from the Sebenoba Wind Energy Power Plant (WEPP) that is located in the Sebenoba region in Hatay, Turkey, and a wind turbine with a capacity of 2 MW is selected for evaluation. According to the results obtained, the maximum turbine power output, maximum power coefficient, maximum axial flow induction factor, maximum thrust force, optimum rotational speed, probability density of optimum rotational speed, and optimum tip speed ratio are found to be 2 MW, 30%, 0.091, 140 kN, 16.11 rpm, 46.76%, and 7, respectively. This study has revealed that wind turbines must work under optimum conditions in order to extract as much energy as possible for approaching the ideal limit.  相似文献   

6.
The effect of organic loading on the performance of a mechanically stirred anaerobic sequencing biofilm batch reactor (ASBBR) has been investigated, by varying influent concentration and cycle period. For microbial immobilization 1-cm polyurethane foam cubes were used. An agitation rate of 500 rpm and temperature of 30+/-2 degrees C were employed. Organic loading rates (OLR) of 1.5-6.0gCODl(-1)d(-1) were applied to the 6.3-l reactor treating 2.0 l synthetic wastewater in 8 and 12-h batches and at concentrations of 500-2000mgCODl(-1), making it possible to analyze the effect of these two operation variables for the same organic loading range. Microbial immobilization on inert support maintained approximately 60 gTVS in the reactor. Filtered sample organic COD removal efficiencies ranged from 73 to 88% for organic loading up to 5.4gCODl(-1)d(-1). For higher organic loading (influent concentration of 2000mgCODl(-1) and 8-h cycle) the system presented total volatile acids accumulation, which reduced organics removal efficiency down to 55%. In this way, ASBBR with immobilized biomass was shown to be efficient for organic removal at organic loading rates of up to 5.4gCODl(-1)d(-1) and to be more stable to organic loading variations for 12-h cycles. This reactor might be an alternative to intermittent systems as it possesses greater operational flexibility. It might also be an alternative to batch systems suspended with microorganisms since it eliminates both the uncertainties regarding granulation and the time necessary for biomass sedimentation, hence reducing the total cycle period.  相似文献   

7.
Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.  相似文献   

8.
A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (tC) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.50 and 0.25 gCOD/L.d, treating 2.0 L liquid medium per cycle. Stirring frequency was 150 rpm and the reactor was kept in an isothermal chamber at 30 °C. Increase in tC resulted in efficiency increase at constant AVOL, reaching 77% at tC of 24 h versus 69% at tC of 8 h. However, efficiency decreased when AVOL decreased as a function of increasing tC, due to the lack of substrate in the reaction medium. Moreover, replacing part of the wastewater by a chemically balanced synthetic one did not yield the expected effect and system efficiency dropped.  相似文献   

9.
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor.  相似文献   

10.
In this study treatment of palm oil mill effluent (POME) was investigated using aerobic oxidation based on an activated sludge process. The effects of sludge volume index, scum index and mixed liquor suspended solids during the acclimatizing phase and biomass build-up phase were investigated in order to ascertain the reactor stability. The efficiency of the activated sludge process was evaluated by treating anaerobically digested and diluted raw POME obtained from Golden Hope Plantations, Malaysia. The treatment of POME was carried out at a fixed biomass concentration of 3900+/-200mg/L, whereas the corresponding sludge volume index was found to be around 105+/-5mL/g. The initial studies on the efficiency of the activated sludge reactor were carried out using diluted raw POME for varying the hydraulic retention time, viz: 18, 24, 30 and 36h and influent COD concentration, viz: 1000, 2000, 3000, 4000 and 5000mg/L, respectively. The results showed that at the end of 36h of hydraulic retention time for the above said influent COD, the COD removal efficiencies were found to be 83%, 72%, 64%, 54% and 42% whereas at 24h hydraulic retention time they were 57%, 45%, 38%, 30% and 27%, respectively. The effectiveness of aerobic oxidation was also compared between anaerobically digested and diluted raw POME having corresponding CODs of 3908 and 3925mg/L, for varying hydraulic retention time, viz: 18, 24, 30, 36, 42, 48, 54 and 60h. The dissolved oxygen concentration and pH in the activated sludge reactor were found to be 1.8-2.2mg/L and 7-8.5, respectively. The scum index was found to rise from 0.5% to 1.9% during the acclimatizing phase and biomass build-up phase.  相似文献   

11.
Data on the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step increases of organic loading rates (OLR) and to organic shock loads (OSL) are presented and discussed. The tubular reactor (100 cm long and 5 cm diameter) with a useful volume of 1995 mL was filled with polyurethane foam cubic matrices holding immobilized biomass and fed with synthetic wastewater. The reactor was operated at the controlled temperature of 30+/-1 degrees C and hydraulic retention time of 7 h. After about 15 days, the HAIB reactor attained operating stability. Thereafter, it was subjected to step increases of the applied OLR that ranged from 6.8 to 18.8 kg COD/m(3)d. After steady state had been achieved at each step, OSL corresponding to approximately three times the operating OLR were applied for 7 h. No disturbance was observed due to the step increase in OLR. An increase in effluent chemical oxygen demand (COD) and volatile fatty acids (VFA) concentrations and a decrease in the percentage of methane in the biogas were observed due to OSL applications. However, stability of the monitoring parameters was always restored approximately 17 h after the application of OSL for all conditions tested.  相似文献   

12.
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1)of LAS, kept at 30+/-2 degrees C and operated with a hydraulic retention time (HRT) of 12h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 mg l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorganisms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment.  相似文献   

13.
纳米级聚合氯化铝处理石化废水絮凝效果研究   总被引:1,自引:0,他引:1  
采用自制的纳米级聚合氯化铝絮凝荆处理石大科技股份公司胜华炼油厂隔油池出水,以处理后水样的透光率作为混凝沉降效果的评价指标,并对絮凝剂投加量、搅拌速度、搅拌时间等影响混凝效果的因素进行了研究。试验表明,聚合氯化铝对石化废水的处理达到较为理想的效果,聚合氯化铝混凝处理石化废水的最佳条件为:纳米级聚合氯化铝投加量为15mg/L左右,慢速搅拌的搅拌速度为50~60rpm,快速搅拌的搅拌速度为190—225rpm,快速搅拌时间90s。慢速搅时间10min时效果最佳。使用Al-Ferron逐时络合比色法及XRD对絮凝荆进行了表征,结果证实样品中Alb含量可达到85%左右。  相似文献   

14.
本文主要针对螺旋升流反应器技术特性,对工艺的好氧反应器进行了氧传递性能的试验研究,考察了反应器水深、曝气量等对螺旋升流反应器氧转移过程的影响;并对试验数据进行回归,得到了氧传质总系数与螺旋升流反应器内表现气速的数学关系。试验结果表明,螺旋升流反应器具有良好的氧传递特性,是一种新型的高效、节能的污水处理反应技术。  相似文献   

15.
An axial symmetry augmented vertical axis wind turbine, which is suitable for arbitrary wind directions, is proposed in this paper. In order to improve the power generation ability of the S-type vertical axis wind turbine, a set of so-called “collection-shield boards” are installed symmetrically around the rotating S-type rotor. The flow fields around this type of wind turbine are numerically simulated with the aid of CFD method. The optimized design of geometrical parameters of the rotor and collection-shield boards is conducted by using the orthogonal design method. The obtained results suggest that the power output of the optimized augmented wind turbine can reach nearly three times higher than that of the conventional S-type vertical axis wind turbine.  相似文献   

16.
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 °C using different COD/[SO(4)(2-)] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 °C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 °C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction.  相似文献   

17.
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.  相似文献   

18.
Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.  相似文献   

19.
Chlorate release into the environment occurs with its manufacture and use. Biological reduction of chlorate offers an attractive option to decrease this release. A hydrogen gas-lift reactor with microorganisms attached to pumice particles was used for the treatment of wastewater containing high concentrations of chlorate. The microorganisms used chlorate as an electron acceptor and hydrogen gas as a reducing agent. After a start-up period of only a few weeks, chlorate reduction rates of 3.2 mmol L(-1) h(-1) were achieved during continuous operation. During this period, a hydrogen consumption rate of 14.5 mmol L(-1) h(-1) was observed. Complete removal of chlorate was maintained at hydraulic retention times of 6 h. This study clearly demonstrates the potential of hydrogen gas-lift bioreactors for the treatment of chlorate-containing waste streams.  相似文献   

20.
A scaled-up conversion process of fish waste to liquid fertilizer was performed in a 5 L ribbon-type reactor. Biodegradation was performed by inoculation of autoclaved fish waste with 5.84 × 10(5) CFU mL(-1) of mixed microorganisms for 96 h. As a result, the pH changed from 6.92 to 5.72, the cell number reached 7.28 × 10(5) CFU mL(-1), and approximately 430 g (28.3%) of fish waste was degraded. Analyses indicated that the 96 h culture of inoculated fish waste possessed comparable fertilizing ability to commercial fertilizers in hydroponic culture with amino acid contents of 6.91 g 100 g(-1). Therefore, the scaled-up production achieved a more satisfactory fish waste degradation rate (3.61 g h(-1)) than the flask-scale production (0.24 g h(-1)). The biodegraded broth of fish waste at room temperature did not undergo putrefaction for 6 months due to the addition of 1% lactate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号