首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
城市天然气管道泄漏数值模拟   总被引:2,自引:0,他引:2  
针对城市天然气管道和城市周围环境的特点,进行了城市管道天然气泄漏事故动态数值模拟,得到了天然气泄漏5,10,15,20 s时甲烷浓度分布图和安全区域图,结果显示城市天然气管道泄漏的规律不同于在平坦地势的泄漏规律,模拟结果可以为城市管道设计和事故求援提供指导依据。  相似文献   

2.
天然气在土壤中扩散行为的实验研究对埋地管道泄漏点的科学定位及泄漏事故的预防具有重要意义.采用全尺度气体泄漏实验系统,模拟真实埋地管道泄漏场景,对泄漏后的天然气在土壤中的扩散对流过程进行实验研究.基于自行研制的气体检测与数据采集系统和GasClam地下气体在线监测仪,分析天然气在土壤中的对流扩散规律.结果表明:埋地管道泄漏后天然气在土壤中的对流扩散过程可以分为4个阶段:孕育阶段、陡然增长阶段、缓慢增长阶段和稳定阶段,其浓度随泄漏时间的变化过程符合S型曲线特征.天然气扩散至检测点所需时间与距泄漏口距离呈现近似的幂指数关系.当检测点位于泄漏口附近区域时,泄漏压力起主导作用.当检测点位于远离泄漏口区域时,泄漏量起主导作用.  相似文献   

3.
城市天然气管道泄漏的危害分析   总被引:1,自引:0,他引:1  
城市天然气系统的管道化很大程度上便利了人们的生活,但与此同时管道泄漏也造成灾难性后果.采用高斯烟团扩散模型,对天然气管道瞬间泄漏的扩散行为进行模拟,计算出天然气管道泄漏后的最大危害距离,其结果可以为应急救援提供决策支持.  相似文献   

4.
为了研究管道异常泄漏时天然气的扩散情况,采用Fluent软件模拟研究不同压力条件下气体在管舱内的浓度分布特性,核算保护半径为7.5 m时的报警探测器在灾变时的响应时间,以达到指导报警探测器设计的目的。结果表明:当泄漏压力为103.3 kPa,200.0 kPa时,对应的报警响应时间分别为2.15 s,0.45 s,报警响应时间随着泄漏压力的增大而减小,在常规中压输出压力下,响应时间最大值为2.15 s;同一泄漏压力下,管舱内气体扩散距离与泄漏持续时间成正相关;报警探测器的响应浓度以爆炸下限的20%为推荐值。  相似文献   

5.
架空及埋地天然气管道泄漏扩散数值研究   总被引:1,自引:0,他引:1  
天然气在管道运输过程中,由于含硫等腐蚀性气体对管道内壁的腐蚀作用,在管内其他压力的作用下,会引起穿孔泄漏。泄漏后的天然气扩散后,可能会引发火灾、中毒或爆炸。因此,进行天然气管道泄漏扩散及数值模拟研究,对管道输送安全运营和保障人生财产安全意义重大。该文利用CFD软件对架空及埋地含硫天然气管道穿孔泄漏后的甲烷、硫化氢气体的扩散进行了数值模拟。结果表明,受土壤毛孔阻力的影响,埋地天然气管道泄漏爆炸范围比架空天然气管道泄漏要小,但其在地面的影响时间长,硫化氢的中毒范围比架空要低30m左右。为天然气的安全输送及环境保护提供了理论依据。  相似文献   

6.
城市天然气管道是城市不可缺少的基础设施之一,为有效遏制天然气管道事故造成的重大灾害,需加强对应急救援系统的研究。选取高斯模型分析泄漏的天然气的扩散过程,并划分事故后果评估区域。利用ArcGIS Engine平台,设计并建立一个城市天然气管道泄漏事故的应急救援系统。利用该系统可模拟天然气管道泄漏后可能发生的气体扩散、火灾、爆炸等事故后果,通过天然气理化参数、天然气泄漏的初始状态和周围环境的气象条件,以可视化方式直观显示不同等级的事故后果评估缓冲区。  相似文献   

7.
天然气管道泄漏火球事故后果模拟评价   总被引:3,自引:1,他引:2  
天然气管道发生泄漏时,大约90%的气体产生燃烧并形成火球,遇火源即发生危害性非常大的火球爆炸事故。本文针对城市天然气管道泄漏事故,综合考虑天然气泄漏后可能发生的火球燃烧和爆炸,利用爆炸冲击波和火球热辐射模型对天然气管道(完全破裂)在发生泄漏时发生火球爆炸进行计算,结果表明:2分钟内泄漏天然气云团超压爆炸的死亡半径和热辐射的火球半径分别高达39.44m和92.93m。因此,通过计算天然气泄漏火球事故爆炸和热辐射范围,对天然气火球爆炸事故预防与应急救援具有一定的意义。  相似文献   

8.
针对架空管道天然气泄漏问题,考虑管道自身对泄漏扩散的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,为提高模拟可信性和合理性,先对计算流域风场进行稳态模拟,再对天然气泄漏扩散过程进行瞬态模拟,分析天然气泄漏扩散规律及风速对泄漏扩散的影响。结果表明:在稳态风场模拟中,管道附近风场受管道影响十分明显,管道上下侧面风速极高;在瞬态天然气泄漏扩散模拟中,天然气泄漏初期的扩散受风速影响明显,验证了先进行稳态风场模拟的必要性,泄漏扩散达到稳定状态后出现气云沉降、单侧分布、尾部分叉、风速影响扩散距离的特征;同等风速条件下,较小浓度边界扩散范围大,达到稳定所需时间短,同等浓度边界条件下,风速与扩散影响面积和浓度边界达到稳定所用时间成反比。  相似文献   

9.
泄漏速率是模拟天然气泄漏过程中计算事故后果的重要指标之一,速率通常由小孔泄漏和大孔泄漏推导得出。但在实际泄漏时,泄漏孔径的大小往往不易及时获得,需要通过保守算法估算泄漏口面积以进一步模拟事故后果。运用流体力学和热力学方法,对天然气泄漏速率的经验公式进行了推导验证。同时使用连续性方法对管道的泄漏速率深入探讨,使用更易测量参数参与计算,使得在发生突发泄漏事故的时候,可以忽略孔径大小以更快速的获得泄漏信息,计算泄漏后扩散影响面积,从而为计算事故后果提供依据,以指导应急救援。  相似文献   

10.
为掌握综合管廊内天然气输气管道泄漏口朝向对气体扩散的影响,使用FLUENT软件对4种不同朝向的泄漏口泄漏过程进行3维数值模拟,对比分析不同工况下气体浓度分布。结果表明:泄漏形成的射流产生强烈气体掺混,降低泄漏口附近气体浓度梯度;随着距泄露孔距离的增加,气体受惯性力作用减弱,并在浮力作用下抬升。管廊纵截面气体浓度场可分为泄漏口附近的均匀区和距离泄漏口较远的分层区。在均匀区内,探测器高度上气体质量分数纵向分布呈阶梯状;距泄漏口较远距离(大于20 m),泄漏口朝向对探测器高度上气体浓度纵向分布影响较小。基于稳态气体分布控制方程,提出气体在分层区内纵向分布关系式。当泄漏口刚好位于2探测器中央(最不利工况)时,泄漏孔朝向为X+(管道距离壁面较远侧)的泄漏气体在喷出后与空气接触时间长,产生涡量更大,使气体在管廊纵向上蔓延速度降低,探测器响应时间相对较长。  相似文献   

11.
为了能够准确的估算输送天然气的管道因泄漏事故导致的损失,就必须建立合理和精确的输气管道泄漏扩散模型。运用流体动力学软件Fluent模拟处于坡面的天然气管道发生破裂时的泄漏扩散规律,得到天然气在泄漏孔径(0.1m,0.18m,0.24m,0.3m)、风速(0 m/s,4m/s,8m/s,10m/s)和泄漏初速度(179m/s,314m/s)对扩散过程的影响,得到坡面天然气管道泄漏扩散规律。研究结果不仅为预测坡面天然气管道泄漏扩散的影响提供了依据,而且对于认识坡面天然气管道泄漏扩散规律、为相关安全事故的预警和救援具有指导意义。  相似文献   

12.
针对长输天然气架空管道泄漏问题,综合考虑风速随海拔变化的边界条件、管道管形及泄漏方向等因素,建立非稳态泄漏模型,对不同管道泄漏压力和不同天然气浓度边界的天然气非稳态泄漏扩散进行了数值模拟。结果表明:在天然气向下泄漏的工况下,天然气气团主要在地面积聚,呈无规则的扩散;天然气管道泄漏压力与气体泄漏扩散速度成正比,与天然气浓度边界达到稳定所需时间成反比:不同泄漏压力下天然气扩散稳定后的扩散距离及泄漏影响面积大致相同;天然气浓度边界越小,达到稳定所需时间越长。  相似文献   

13.
为研究液化天然气(LNG)加气站发生泄漏后造成的事故后果及现有可燃气体探测器覆盖率是否满足要求,采用FLACS三维模拟软件模拟典型LNG加气站槽车及卸车管道、储罐、加气机单元,发生泄漏后火灾热辐射、爆炸超压造成的事故影响范围,评估现有可燃气体探测器对所发生泄漏的探测覆盖情况。研究结果表明:LNG槽车、LNG储罐发生50 mm泄漏,站房及加油区域靠近LNG储罐处热辐射可达25 kW/m2,辐射强度导致附近人员伤亡;LNG撬装及加油机附近最大爆炸超压超过20 kPa;通过可燃气体探测器覆盖率评估得出LNG加气站接卸软管向西、向南方向发生泄漏,无有效探测途径。  相似文献   

14.
针对城市埋地天然气管道泄漏天然气扩散问题,基于计算流体动力学CFD方法建立城市埋地天然气管道泄漏扩散数值模型,对天然气的主要成分——甲烷在土壤中的扩散行为进行模拟与分析,根据甲烷的爆炸极限观察天然气泄漏扩散危险区域变化,并分析不同孔隙率土壤对天然气扩散的影响。研究结果表明:埋地天然气管道泄漏气体扩散至土壤过程中,气体浓度等值线出现不规则变化,高浓度区等值线近似为椭圆,浓度梯度随时间的增加而减小,爆炸下限位置在天然气泄漏初期迅速变化,10 s后以均匀速度向地表移动;土壤孔隙率对天然气对流扩散影响显著,孔隙率越大,管道泄漏口处高浓度区域越大,中浓度区域越小,低浓度区域越容易扩展到地表,浓度梯度变化趋势相似。  相似文献   

15.
本文针对液化天然气管道泄漏场景,以某拟建LNG接收站LNG储罐进出罐管道为模拟对象,运用DNV公司的PHAST RISK软件模拟计算管道大孔、完全断裂泄漏场景,考虑泄漏概率、点火源等因素影响,模拟出个人风险曲线和社会风险曲线。结果表明:PHAST RISK软件模拟LNG管道泄漏场景确定防护目标与个人风险基准、社会风险基准之间的关系具有重要参考价值,可以协助企业提出安全改进措施建议,提升企业安全生产管理水平。  相似文献   

16.
高压管道天然气泄漏扩散过程的数值模拟   总被引:5,自引:2,他引:3  
采用CFD模型的方法对高压管道内的天然气泄漏和扩散过程进行了数值模拟。其结果表明,从高压管道泄出的天然气在大气中主要表现为高速射流的泄漏过程和随后的扩散过程。在泄漏过程中,天然气在泄漏口附近为欠膨胀射流,整个泄漏过程具有一定的高度;在扩散过程中,天然气在浮力作用下以向上扩散的形式发展。研究了不同环境风速对扩散过程的影响,较大的风速可以使天然气向下风方向更远的距离扩散,从而增大了天然气爆炸危险浓度的范围。研究结果可  相似文献   

17.
“2007年11月2日9时,广东珠海——中山天然气管道翠亨阀室南300m处,有人擅自在管道附近挖土作业,挖掘机将管道挖破,天然气大量泄漏。”随着电话铃声响起,中海石油天然气及发电有限责任公司(简称气电公司)应急指挥中心启动应急预案。人员就位,应急会议随即召开。接到指派的人员正在赶赴现场……  相似文献   

18.
某埋地天然气管道发生泄漏事故,检查发现是一对接焊接接头开裂,裂纹长50mm,开挖时整条焊缝断裂。从管道焊接、安装、无损检测、管沟施工、设计使用等方面综合分析,提出管道开裂失效的主要原因是管道安装时施工质量失控所致。排查整条管道,拟定两种返修方案并比较优劣,确定采用金属波纹膨胀节进行返修。总结经验,提出安装监检时的一些建议。  相似文献   

19.
为了分析管输天然气在不同介质中泄漏问题,基于流体力学和多孔介质理论,通过CFD软件建立了管道泄漏的三维仿真模型对该问题进行分析。首先,针对架空管道和埋地管道分别建立了泄漏扩散模拟模型和多孔介质的埋地管道模型;其次,对不同压力下的天然气管道进行模拟计算;最后,通过甲烷体积分数和压力分布等参数对管道泄漏现象进行分析。仿真实验结果表明:相同压力下,在空气中泄漏的天然气在进入空气时会形成射流,在同一水平面上沿射流中心点向外甲烷浓度呈抛物线型分布;在土壤中泄漏的天然气会在泄漏口处形成蘑菇云状分布。  相似文献   

20.
天然气管道时常受到破坏,并诱发巨大的射流火焰,可能引燃周围建构物体。系统地分析了管道压力对天然气射流火热辐射灾害的影响,以建立天然气射流火热辐射灾害的系统定量分析方法。基于压力管道小孔泄漏模型和权重-多点源热辐射计算模型,建立了目标物体最大入射热辐射通量、管道压力和目标物与泄漏小孔水平距离的定量关系式。进而选定10 k W/m~2和31.5 k W/m~2作为城镇建筑物遭受引燃和机械破坏的热辐射通量阈值,得到了不同管道压力下天然气射流火热辐射灾害范围。计算结果表明,GB 50028—2006《城镇燃气设计规范》依据管道压力所规定的燃气管道与建筑物的安全间距不能完全满足天然气管道破坏时射流火焰的安全要求,与某武汉天然气管道射流火事故后果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号