首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
以肼黄染料废水为模拟对象,在单因素试验的基础上通过响应面法优化Fenton氧化的脱色效果,研究了初始pH值、Fe2+投加量和H2O2投加量3个因素在该废水脱色过程中的显著性和交互性.结果表明,这3个因素对肼黄染料废水的脱色率的影响均具有显著性,且初始pH值与Fe2+投加量的交互影响、Fe2+投加量与H2O2投加量的交互影响也具有显著性.响应面法优化得到的最佳脱色工艺:初始pH值为3.19,Fe2+质量浓度为23.2 mg/L,H2O2质量浓度为345.4 mg/L,反应温度45℃,反应时间5 min;在此条件下的理论脱色率为90.85%,与3次实际平行试验的脱色率均值仅相差2.30%.  相似文献   

2.
铁-柠檬酸,铁-酒石酸,铁-丁二酸,铁-草酸配合物在高压汞灯(λmax=313nm,250W)的照射下,能使活性艳红X-3B染料水溶液脱色。染料初始浓度在10mg/L~50mg/L时,染料脱色为动力学一级反应,脱色速率随初始浓度增大而降低。在pH2.0~3.0时铁-柠檬酸,铁-滴石酸,铁-丁二酸的染料溶液脱色效果较佳,在pH4.0时铁-草酸的染料溶液脱色效果最好。铁/羧酸盐配比对染料脱色速率也有影响。  相似文献   

3.
Fe(Ⅲ)/苹果酸/H_2O_2体系对有机物的光降解特性研究   总被引:1,自引:1,他引:0  
系统研究了可见光照射下染料橙黄Ⅱ在Fe(Ⅲ)/苹果酸/H2O2体系中的脱色情况,考查了光源、pH值、Fe(Ⅲ)、苹果酸、H2O2及染料初始浓度等因素对橙黄Ⅱ脱色效率的影响.结果表明,Fe(Ⅲ)/苹果酸/H2O2体系在可见光照射下能有效实现橙黄Ⅱ的脱色,在pH为5.0的条件下仍然具有较强的降解有机物的能力.该体系对橙黄Ⅱ的脱色率高于Fe(Ⅲ)/H2O2体系或Fe(Ⅲ)/苹果酸体系,光反应符合表观一级反应动力学规律.随着光强的增加,橙黄Ⅱ的脱色率增大.太阳光是该体系的有效光源,本体系具有利用太阳光的潜力.  相似文献   

4.
采用Fe(NO)3.39H2O和FeSO.47H2O混凝剂处理模拟大红染料废水,通过改变各药剂投加量及废水pH值,考察其对废水COD和色度的去除效果。实验结果表明:两种混凝剂在处理大红染料废水中都表现出了较好的脱色性能,而Fe(NO3)3.9H2O的去除性能较FeSO.47H2O更为优越。Fe(NO)3.39H2O对染料废水的脱色作用十分显著,所有的脱色率都在86%以上。当投加量为0.18 g时,脱色率达最大值93.3%;当投加量为0.24 g时,COD去除率为63.6%。FeSO.47H2O对废水色度的去除效果好于COD的去除。其最佳投加量为1.5 g,此时,脱色率达82.4%;当投加量为0.9 g时,COD去除率为51.8%。Fe(NO)3.39H2O在pH为5.0~9.0之间处理效果都较好,当pH=8时,其脱色率最高,为93.4%;FeSO.47H2O在pH为6.0~8.0之间最佳,当pH=8时,脱色率最高为83.2%。  相似文献   

5.
采用零价铁(Fe0)-厌氧微生物处理体系,以蒽醌染料活性艳蓝X-BR为处理对象,通过摇床试验研究了Fe0投加量、pH值等因素对染料脱色的影响,并对比了该染料在3种不同处理体系中的脱色效果.结果表明,在Fe0-厌氧微生物体系中,Fe0投加量和pH值均存在最适宜值,当两者分别控制在400mg/L和7,染料初始浓度和反应时间分别为100mg/L和68h时,该体系脱色率可达到90%以上;与相同反应条件下的纯Fe0、纯厌氧微生物体系相比,该体系的脱色率提高近40%.根据紫外-可见光谱分析,Fe0可有效促进厌氧微生物对X-BR及其中间产物的降解,实现完全脱色.其脱色符合准一级动力学,当染料初始浓度由50mg/L增至800mg/L时,反应速率常数k值由0.0470h-1降至0.0102h-1.  相似文献   

6.
采用UV/H2O2/草酸铁络合物氧化工艺处理染料活性艳蓝K-3R模拟废水,考察了不同反应条件对脱色效果的影响。试验结果表明:UV/H2P2/草酸铁络合物氧化工艺对活性艳蓝K-3R具有较好的脱色效果,pH值,H2O2,Fe^3+,C2O4^2-的浓度对脱色效果有较大影响。对7种不同类型的染料模拟废水的UV/H2O2/草酸铁络合物氧化工艺脱色实验结果表明,染料结构对于脱色效果也有很大影响,偶氮染料比蒽醌染料更易于脱色。  相似文献   

7.
在室温25℃,染料氨基黑10B质量浓度为40 mg/L,FeSO4浓度为2 mmol/L,H2O2浓度为4.5 mmol/L,pH值为3.0,反应时间为60 min条件下,对比研究了5种常见无机离子(Fe3+,Cu2+,NO3-,H2PO4-和Cl-)对Fenton氧化染料氨基黑10B脱色效果的影响.试验结果表明,Fe3+具有一定的促进作用,而Cu2+,NO3-和Cl-则对反应有一定的抑制作用,溶液中H2PO4-的存在,对Fenton有较强的抑制作用.  相似文献   

8.
以20W紫外灯为光源,研究了将TiO2负载在凹凸棒石上,对染料水样进行光催化降解。由试验得出光催化反应过程中的工艺条件,在此基础上添加H2O2、Fe3+,反应1h后;染料脱色率达95%以上。  相似文献   

9.
磺化酞菁铁的合成与光催化降解染料废水的研究   总被引:6,自引:0,他引:6  
采用邻苯二氰方法合成了酞菁铁(FePc)配合物,后又经碘化得磺化酞菁铁(FePcSx),以其作为催化剂利用过氧化氢(H2O2)对模拟染料废水活性艳红X-3B进行光催化降解脱色试验(λ>320nm),结果染料废水的降解脱色率较高。并且通过与单独用过氧化氢降解进行对照,表明磺化酞菁铁具有很好的催化活性与优良的化学结构。  相似文献   

10.
酞菁类复合催化剂对染料橙黄Ⅱ水溶液的光催化脱色研究   总被引:1,自引:0,他引:1  
制备了复合催化剂酞菁蓝 (CuPc) TiO2 、FePz(Cu -Fe) TiO2 、TiO2 α Fe2 O3、TiO2 β FeOOH、酞菁蓝 α Fe2 O3、酞菁蓝 β FeOOH .在紫外灯 (15W ,λmax=2 5 4nm)的照射下 ,通过对照实验 ,研究了复合催化剂对橙黄Ⅱ水溶液的光催化脱色效果 ,初步考查了复合光催化剂投加量、pH对处理效果的影响  相似文献   

11.
染料废水具有有机物含量高、色度高和水量大等特点,直接排入水体会破坏生态环境,需要进行有效的处理。高铁酸盐[Fe(Ⅵ)]是一种绿色双效水处理剂,在水污染治理中有着广阔的应用前景。采用Fe(Ⅵ)与Fe_3O_4纳米颗粒联用处理罗丹明B、甲基橙、刚果红3种模拟染料废水,研究Fe(Ⅵ)和Fe_3O_4投加量、溶液初始pH值、反应时间以及自由基淬灭剂等因素对模拟染料废水脱色效果的影响,并初步探究其作用机理。试验结果表明:Fe(Ⅵ)/Fe_3O_4体系对罗丹明B和刚果红模拟染料废水的脱色效果较好,在中性条件下,当Fe(Ⅵ)投加量为10 mgFe/L、Fe_3O_4投加量为0.3 g/L时,反应8 min后,脱色率接近100%;Fe(Ⅵ)/Fe_3O_4体系对甲基橙模拟染料废水的脱色效果略差,当Fe(Ⅵ)剂量提升至14 mgFe/L时,脱色率可达80%;Fe(Ⅵ)/Fe_3O_4体系对3种染料混合后的模拟废水也有较好的处理效果,混合模拟染料废水化学需氧量(COD)的去除率可达70%;此外,通过添加羟基自由基(·OH)淬灭剂,间接证明Fe(Ⅵ)还原过程中产生的H_2O_2与Fe_3O_4原位构成一个类芬顿体系,强化了对废水中污染物的去除效果。  相似文献   

12.
UV/Fenton反应对直接黑38的脱色与矿化   总被引:5,自引:3,他引:2  
为了研究过程参数对photo-Fenton法降解偶氮染料直接黑38人工废水的影响,进行了实验室规模的UV/Fenton反应光催化降解染料直接黑38的研究。在一定的时间段内检测水溶液直接黑38的UV吸光度、总有机碳(TOC)浓度的变化,确定了直接黑38废水的降解速度。以单因素实验方法确定了pH值、[Fe2+]、[H2O2]比例及其初始浓度对降解速度的影响。实验结果表明,在pH为3,染料浓度为30mg/L,[Fe2+]/[H2O2]比例1:100,[Fe2+]=0.12mmol/L,[H2O2]=12mmol/L条件下,UV/Fenton方法能在50min内使染料脱色率达90%,使TOC的去除率达到57%。实验证明了photo-Fenton法对于含有偶氮染料废水的脱色与矿化具有很好的应用前景。  相似文献   

13.
本文采用草酸铁法(UV/Fe(C2O4)33-/H2 O2)氧化活性黄染料废水,其动力学模型为拟一级动力学反应,反应速率常数分别为0.01084 s-1,通过动力学研究方法获得染料废水脱色反应的半衰期为68s;考察了pH值和反应温度的变化对氧化反应动力学的影响,初始pH值在3.0~4.0之间,对于草酸铁法羟自由基氧化脱...  相似文献   

14.
在H2O2存在条件下,对酸性黑染料进行强化日光照射处理,研究了染料初始浓度、pH值、光照强度、不同阴离子等因素对酸性黑染料废水脱色的动力学影响。结果表明,染料光解脱色速率随光照强度的增加而增加,但在较高光强下时,降解速率增加并不明显。酸性黑在酸性媒介的光解脱色速率比碱性媒介略大。除SO42-离子外,实验范围内的其它Br-、NO3-、Cl-和NO2-等阴离子,均对降解速率有负影响,其中NO2-对脱色降解速率影响最显著。处理前后的UV-Vis谱图分析表明酸性黑在强化日光/H2O2光解处理中脱色是因为染料发生氧化光降作用。  相似文献   

15.
利用水热法制备了Fe3O4纳米粒子(Fe3O4NPs),并对其进行改性制备了改性聚合物Fe3O4MMPs.同时,利用X射线衍射(XRD)、扫描电镜(SEM)和紫外可见漫反射(DRS)等手段对所制备的材料进行表征.通过比表面积(BET)测定发现,Fe3O4MMPs的比表面积较Fe3O4NPs增大约9倍.在可见光照射下(λ420 nm),以H2O2为氧化剂,比较研究了以Fe3O4NPs和Fe3O4MMPs为光催化剂降解罗丹明B(Rhodamine,RhB)的催化特性,并探讨了Fe3O4改性对催化活性的影响.结果表明,改性聚合物Fe3O4MMPs的稳定性增加,对底物RhB的降解活性提高,120 min时对RhB的脱色率在98%以上;此外,Fe3O4MMPs对水杨酸(Salicylic Acid,SA)也具有很好的降解效果.利用电子自旋共振技术(ESR)测定氧化物种的结果表明,降解过程涉及羟基自由基(·OH)和超氧自由基(·O-2)氧化机理.  相似文献   

16.
以酸性大红、中性枣红、阳离子红、活性黑5四种模拟印染废水开展O3氧化偶氮染料的效果研究.实验中发现O3对染料具有非常好的脱色效果,30 min后除中性枣红外其他三种染料脱色率接近100%,但是单独O3的TOC去除率不高.光谱扫描表明,处理后染料的特征吸收峰很快消失,而紫外光区的吸收峰变化很小,推测O3氧化以直接氧化为主,打开了染料分子的发色基团,但并未将染料分子彻底氧化.还应加强O3氧化能力、彻底矿化去除污染物的研究.  相似文献   

17.
采用荧光假单胞菌(Pseudomonas fluorescen,简称pf菌)与Fe0微粒构建Fe0/pf菌联合体系,处理了含偶氮类染料-直接耐晒黑(C.I.Direct black 19,简称DB19)废水.在中温((35±2)℃)条件下,比较了纯pf菌、纯Fe0微粒和Fe0/pf菌联合体系的脱色能力,并探讨了联合体系中供氧条件、初始pH值、Fe0投加量和染料初始浓度等因素对DB19脱色的影响.结果表明,在微需氧、菌接种量为5%(体积比)的条件下,染料初始浓度为100 mg·L-1、初始pH =7.0、Fe0投加量为500 mg·L-1时,联合体系内脱氢酶活性最高,处理约30 h后可实现90%以上的脱色率;与纯pf菌比较,Fe0/pf菌联合体系达到该脱色率的时间可提前约40 h.UV-vis和FT-IR光谱分析表明,联合体系中DB19染料的脱色过程是通过偶氮键断裂来实现的,而且部分含苯环或萘环结构的中间产物也可被降解.  相似文献   

18.
以纳米TiO2为光催化剂,以活性艳兰KN-R为模拟染料废水,研究了溶液pH值、TiO2投加量、H2O2用量及染料初始浓度对染料脱色率的影响。结果表明,活性艳兰KN-R的脱色率随溶液pH值的升高及染料初始浓度的降低而增大;TiO2和H2O2的投加量均存在一个最佳值,在本实验条件下,它们分别为0.5g/L和2.0×10-2mol/L,低于或超过该值都会导致染料脱色率的下降。在适宜的操作条件下,活性艳兰KN-R的脱色率可达98%以上,化学需氧量(COD)的去除率在70%以上。  相似文献   

19.
在对聚合硫酸铁(PFS)絮凝性能研究的基础上,采用化学沉淀法制备了纳米Fe3O4,并对纳米Fe3O4强化聚合硫酸铁絮凝性能进行了研究。结果表明:纳米Fe3O4可以强化聚合硫酸铁的絮凝效果并有助于加速矾花沉降,处理制衣厂水洗废水脱色率、COD去除率、絮体沉降速度明显优于PFS、PAC、FeSO4等传统的絮凝剂。脱色率、COD去除率达到95.3%、80.4%。  相似文献   

20.
李克斌  罗倩  魏红  张涛  陈经涛 《环境科学学报》2010,30(11):2242-2249
为了明确影响Cu2+/吡啶/H2O2对模拟染料(DR4BE)废水脱色的主要因素,采用动力学分析、正交和Box-Behnken实验设计研究了不同溶液pH、Cu2+、吡啶、H2O2浓度及Cu2+、吡啶和H2O2组合对初始脱色速率常数和最终脱色率的影响.同时,采用自由基抑制、H2O2催化分解实验探索了Cu2+/吡啶/H2O2对染料的脱色机理.结果发现,Cu2+/吡啶/H2O2能有效使DR4BE快速脱色,脱色效率远高于Cu2+/H2O2;pH是影响初始脱色速率最重要的因素,吡啶、Cu2+及pH是影响最终脱色率最重要的因素;溶液pH在7.0左右时有利于该脱色过程的快速进行.Cu2+与吡啶的交互作用相对较强,吡啶、Cu2+与H2O2的交互作用相对较弱.羟基自由基氧化是Cu2+/吡啶/H2O2对染料DR4BE初始快速脱色的主要机理.研究结果还表明,Cu2+/吡啶/H2O2体系可用于中性条件下染料废水的快速脱色处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号