首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The first-order decay model is the only highly recommended method for estimating landfill gas emissions from solid waste disposal sites according to 2006 IPCC (Intergovernmental Panel on Climate Change) Guidelines. It is also encouraged to collect relevant activity data over the past 50 years to apply the first-order decay model. Even though it is beneficial to facilitate the accuracy of landfill gas emissions estimation, it may not be an easy task to collect reliable data for such a long period of time. It is discussed in this study that a data collection over a shorter period of time may yield a comparable accuracy for emissions estimation depending on methane generation rate or half-life of landfill wastes. Based on the analysis of mathematical properties of the first-order decay model, the estimation accuracy with respect to the length of data collection period has been investigated. Finally, it is also proposed how to estimate the amount of landfill gas emissions and analyze the level of estimation accuracy considering the length of time period since the deposition of wastes.  相似文献   

2.
3.
The aim of this study is to investigate the quality and quantity of hospital wastes in Iran. The generated hospital wastes have been estimated by the number of hospitals and the number of active beds in each province of Iran in 2001. All data and information have been gathered from: (i) Iran Statistics Center, (ii) literature review, and (iii) hospital waste investigations for an average hospital. Physical analyses have been conducted in terms of various materials (plastic, textile, paper, metal, and others) and components (biological, infectious, medical, and regular wastes). Based on the above-mentioned investigation and information, a mathematical model has been developed to calculate the generation of (infectious) hospital wastes for any desired year. Utilizing the model, generated infectious hospital wastes has been estimated as 698,937 tones for 2008 (short-term) and 3,494,387 tones for 2028 (long-term period). If the real infectious wastes are collected separately, then the generated infectious wastes will be reduced by 15.1% of the above-mentioned amount (139,787 tones for 2008, and 698,877 tones for 2028). Results of physical analysis show the components of the hospital waste as: (a) infectious, 67.3%; (b) medical, 8.8%; (c) biological, 1.8%; and (d) common municipal wastes, 22.1%. An appropriate collection method requires training the staff at hospitals along with preparation of the required facilities. Of course, both of these requirements are cost intensive.  相似文献   

4.
This paper focuses on the accumulation of construction waste generated throughout the erection of new residential buildings. A special methodology was developed in order to provide a model that will predict the flow of construction waste. The amount of waste and its constituents, produced on 10 relatively large construction sites (7000-32,000 m2 of built area) was monitored periodically for a limited time. A model that predicts the accumulation of construction waste was developed based on these field observations. According to the model, waste accumulates in an exponential manner, i.e. smaller amounts are generated during the early stages of construction and increasing amounts are generated towards the end of the project. The total amount of waste from these sites was estimated at 0.2 m3 per 1 m2 floor area. A good correlation was found between the model predictions and actual data from the field survey.  相似文献   

5.
6.
The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0m(3)m(-2)h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0m(3)m(-2)h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0m(3)m(-2)h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control.  相似文献   

7.
The generation rates of each residential solid waste component was determined for test areas in the U.S.A. and Japan. To keep the results consistent; single family dwelling areas in Madison (U.S.A.) and Sapporo (Japan), which have similar characteristics, were selected as test areas; the same survey methods were employed in both cities; all waste material from households, including recycled material, was estimated. The average person in Madison was found to produce twice the amount of paper waste, half the amount of food waste but approximately the same quantity of total residential waste (other than yard waste) as in Sapporo.  相似文献   

8.
The new EU challenge is to recover 70% by weight of C&D waste in 2020. Literature reveals that one major barrier is the lack of data. Therefore, this paper presents a model which allows technicians to estimate C&D waste during the design stage in order to promote prevention and recovery. The types and quantities of CW are estimated and managed according to EU guidelines, by building elements and specifically for each project. The model would allow detection of the source of the waste and to adopt other alternative procedures which delete hazardous waste and reduce CW. Likewise, it develops a systematic structure of the construction process, a waste classification system and some analytical expressions which are based on factors. These factors depend on technology and represent a standard on site. It would allow to develop a database of waste anywhere. A Spanish case study is covered. Factors were obtained by studying over 20 dwellings. The source and types of packaging waste, remains, soil and hazardous waste were estimated in detail and were compared with other studies. Results reveal that the model can be implemented in projects and the chances of reducing and recovery C&D waste could be increased, well above the EU challenge.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号