首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氧化还原过程在铬的形态转化中起了重要作用,而铬形态的转化能够影响其生物有效性及毒性。通过温室土培试验研究了六价铬(Cr(Ⅵ))与三价铬(Cr(Ⅲ))在淹水与不淹水条件下在土壤溶液中的动态变化及水稻对其吸收的变化。结果表明,土壤中添加Cr(Ⅲ)时,土壤溶液中检测不出Cr;而随着土壤中添加Cr(Ⅵ)浓度的增加,土壤溶液中Cr(Ⅵ)的浓度增加,但是溶液中检测不出Cr(Ⅲ);淹水处理总体上降低了土壤溶液中Cr(Ⅵ)的浓度。而土壤添加Cr(Ⅲ)、Cr(Ⅵ)和水分处理对土壤溶液p H没有显著影响,p H在7.08.0之间变动。土壤添加Cr(Ⅵ)处理的水稻中,只有90 mg·kg-1Cr(Ⅵ)淹水处理的水稻成活,而其余处理水稻没有成活。土壤中添加Cr(Ⅲ)处理,水稻幼苗生物量随Cr(Ⅲ)浓度的增加而显著降低;除了200mg·kg-1Cr(Ⅲ)处理外,其余淹水处理的水稻幼苗生物量明显高于不淹水处理的。土壤添加Cr(Ⅲ)处理的水稻,在不淹水条件下水稻空壳率比较高,淹水条件下,随着土壤中添加Cr(Ⅲ)浓度水平的增加,水稻各部位Cr含量有增加的趋势,但增加不显著,秸秆最高Cr含量达到33.80 mg·kg-1,籽粒中Cr含量最高0.30 mg·kg-1。土壤固定Cr(Ⅲ)的能力远强于Cr(Ⅵ),添加Cr(Ⅵ)处理的土壤溶液中Cr(Ⅵ)的浓度很高,对水稻表现出较强的生长抑制。  相似文献   

2.
在总结国内外相关研究基础上,介绍了土壤环境中铬(Cr)的污染来源、现状及其对生物的危害,阐述了Cr在土壤中的存在形态和转化机理,并重点综述了土壤重金属Cr(VI)污染的微生物修复机理:土壤中的Cr(VI)可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,从而达到Cr污染土壤修复的目的.此外,针对微生物修复过程中存在的问题,提出了提高微生物修复Cr污染土壤效果的措施,并对土壤Cr污染微生物修复的发展趋势进行了展望.  相似文献   

3.
We studied copper uptake by maize grown on soils that have been contaminated with CuSO4. In soil the total copper level ranged from 24 to 135 mg kg–1. The copper distribution in soil fractions was assessed by sequential extraction, showing that anthropogenic copper is mainly concentrated in oxides fractions. The copper concentration of maize at the maturity stage reached values from 36.3 to 65.9 mg kg–1 compared to copper levels usually found in non-contaminated crops (5–30 mg kg–1). Here we demonstrate that copper can be accumulated by maize and that copper concentration in maize can be predicted by equations including copper concentration of soil fractions.  相似文献   

4.
Data are presented on the heavy metal concentrations in mussels, Mytilus edulis (L), sampled over a 1 yr period (August 1980–August 1981) from Northern Ireland coastal waters. The study was aimed at investigating the spatial extent and temporal trends in heavy metal contamination and highlighting any areas with exceptionally high levels of toxic metals. With the exception of two sites with high values for mercury and chromium, respectively, contamination by metals was relatively low. Significant spatial and temporal differences in the concentrations of several metals were found. There were also significant spatial x temporal interactions for all the metals studied. Significant negative correlations between the percentage dry matter content of mussels and the concentrations of several metals were found. There were also significant positive correlations between certain pairs of metals. It is proposed that small variations in contamination of the marine environment can be detected by subtle differences in the concentration of metals in mussels and that mussel condition may be adversely affected by metal contamination.  相似文献   

5.
The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0–10 and 10–20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO3) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.  相似文献   

6.
The atmospheric particulates from the Caracus Valley in Venezuela and the fluvial particulates transported by the Tuy River into the Caribbean sea have been evaluated for Pb, Cu and Zn with the purpose of determining the contamination levels in the study area. The atmospheric particulate samples were collected in the city of Caracas using a low volume sampler whereas the fluvial particulate were collected at the mouth of the Tuy River. The particulate samples were analysed by flame or graphite furnace atomic absorption spectrometry depending upon the concentration levels of the heavy metal under study. The results obtained for the fluvial particulates enabled estimates to be made of the total anthropogenic flux of Cu (383 ton year–1), Pb (528 ton year–1) and Zn (865 ton year–1). These results yield annual per capita inputs for Cu (96 g),Pb (132 g) and Zn (216 g) which greatly exceed those from global anthropogenic emissions. The weighted average concentration of Pb (1.13 %) found in the atmospheric particulates was much higher than those for Cu (140 mg kg–1) and Zn (200 mg kg–1) and reflects the high motor car traffic in the Caracas Valley. The anthropogenic/natural ratios estimated in this study were as follows: 2.6 for Pb; 1.5 for Cu and 1.5 for Zn. This indicates that anthropogenic inputs for Cu, Pb, and Zn in the study area exceed those from natural sources, cars being the major source for Pb and industrial activities the major sources for Cu and Zn.  相似文献   

7.
• Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).  相似文献   

8.
An exposure assessment was conducted on naturally metal enriched topsoils of the city of Port Macquarie in order to establish whether the soils pose any threat to human health. Surface soils (0–10 cm depth, <2 mm) were investigated for their total, bioavailable and leachable Cr and Ni concentrations. Total metal concentrations ranged from 145 to 4540 mg Cr kg–1 and 20 to 2030 mg Ni kg–1, whereas soil extractions revealed low leachable contaminant concentrations (EDTA extraction: <0.1–0.2 mg Cr L–1 and <0.1–4.7 mg Ni L–1; acetic acid extraction: <0.1 mg L–1 Cr and Ni). Thus the bioavailability of Cr and Ni to plants is low, the leaching of metals into ground and surface waters is insignificant and the pathways of these metal pollutants from topsoils into residents are limited to the inadvertent ingestion, inhalation and skin adsorption of soil metals. Simulated gastric experiments, using hydrochloric acid, indicated that less than 0.01% of the total Cr and 0.1–2.4% of the total Ni ingested are soluble and available, for uptake into the human body. Critical receptors, such as small children would have to ingest considerable soil quantities (> 11.8 g per day) over long periods of time to experience an appreciable risk of deleterious effects. Thus, although Cr and Ni are present in high concentrations, the effective uptake of Cr and Ni from soil by the majority of residents is insignificant. The possibility that the Ni enriched topsoil induces allergic contact dermatitis in sensitised individuals remains to be evaluated.  相似文献   

9.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

10.
Fly ash has been found to be a potential material for the treatment of municipal and industrial wastewater, and may be useful in the treatment of septic tank effluent. Laboratory columns (30 cm) were used to determine the sorption capacity and hydraulic properties of lagoon fly ash, loamy sand, sand, and sand amended by lagoon fly ash (30 and 60%) and red mud gypsum (20%). The removal of chemical oxygen demand (COD) was high in all column effluents (71–93%). Extent of nitrification was high in Spearwood sand, Merribrook loamy sand and 20% red mud gypsum amended Spearwood sand. However, actual removal of nitrogen (N) was high in columns containing lagoon fly ash. Unamended Spearwood sand possessed only minimal capacity for P sorption. Merribrook loamy sand and red mud gypsum amended sand affected complete P removal throughout the study period of 12 weeks. Significant P leakage occurred from lagoon fly ash amended sand columns following 6–10 weeks of operation. Neither lagoon fly ash nor red mud gypsum caused any studied heavy metal contamination including manganese (Mn), lead (Pb), zinc (Zn), cadmium (Cd) and chromium (Cr) of effluent. It can be concluded that Merribrook loamy sand is better natural soil than Spearwood sand as a filter medium. The addition of lagoon fly ash enhanced the removal of P in Spearwood sand but the efficiency was lower than with red mud gypsum amendment.  相似文献   

11.
First results are presented from the Urban geochemistry of Tallinn, a project supported by the Scientific and Environmental Affairs Division of NATO. The distribution of chemical elements in 532 samples of the topsoils from the territory of the biggest industrial centre of Estonia (pop. 500,000) is interpreted. Statistical analysis and mapping of major and trace elements at the territory of the Tallinn region and of the city were performed and background values and local anomalies of chemical elements on the territory were determined. The investigation focussed on the determination of zones with anomalously high concentrations of elements and the relationships of soil contamination with different pollution sources. The increase of the element concentrations has natural as well as anthropogenic origins. A detailed comparative analysis of the element distributions and the results of a factor analysis showed that the distribution of the major chemical elements depended mainly on the composition of the underlying sedimentary rocks.The territory of Tallinn is characterised by relatively high and widespread concentrations of Ba, Cr, Ga, Ni, Ti and Zn. Especially intensive local concentrations were determined for As, Cr, Mn, Ni, Pb, S, V and Zn, which are typical for the local pollution of the soils by industrial sources. The levels of As, Cr, Mn and V are more than three times. Pb and Zn are more than five times higher in the geochemical anomalies than for background levels. For the Tallinn region two major associations of elements connected with industrial pollutions of the soil are typical: the first association includes Ba, Cr, Mn, Ni and partly Fe and the second one includes As, Pb and Zn. For the city of Tallinn an increase of Ag, Ba, Be, La, Pb, Sn and Zn concentration in the soil was detected. Ba, Cr, Mn and Ni occur in high concentrations in the soils around Maardu. Different types of contamination sources can be identified in Tallinn and its suburbs.  相似文献   

12.
This study was initiated to identify the impact of metals and uranium enriched soil and black shale in groundwater quality and contamination. From a Piper diagram, groundwater was classified into four types as (Ca+Mg)–HCO3 type, (Ca+Mg)–SO4 type, the mixed type of these two and Na–HCO3 type, reflecting the complicated nature of geology of the study area. Silicate weathering appeared to be the major water–rock interaction. In groundwater, metals including Cr, Pb, Cu and V, previously identified as being enriched in soils and black shale, were much lower in concentrations than Korean and US EPA drinking water guidelines. Instead, Fe and Mn caused major water-quality problems. In the artesian groundwater from an abandoned uranium mine, the uranium concentration was 21.3 µg L–1, slightly higher than EPA guidelines of 20 µg L–1. Heavy metals in groundwater appeared to be controlled mostly by sorptions on to Fe- and Mn-oxyhydroxides. They could be remobilised in groundwater with changes of pH and Eh conditions due to acid mine drainage from black shale or the recharge of fresh water. Uranium would be associated with carbonate and sulphate complexes in groundwater. Because of the remaining water-quality problems in the study area, we suggested containment of identified mine wastes, considering remedial measures for local problems with Fe and Mn, continuous monitoring of groundwater and developing groundwater from deep aquifers.  相似文献   

13.
This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead–zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002–2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 μg L−1, copper (Cu) 616 μg L−1, cadmium (Cd) 223 μg L−1 and lead (Pb) 10,590 μg L−1, which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6–174 μg L−1), Cd (1–46 μg L−1) and Pb (2–26 μg L−1). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO4), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO4 increased while those of bicarbonate (HCO3) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758–10,550 μg L−1) near the mine, which far exceeded the Korean standard of 1000 μg L−1 for drinking water. The decreases in the heavy metals contents in the groundwaters associated with reduced rainfall were quite different from the increases observed for the stream waters, which is not clearly understood at this time and warrants further investigation.  相似文献   

14.
Heavy metal pollution in soil and wastewater is a worldwide environmental issue in which microorganisms play a significant role for its removal. In the present study, biosorption of Cr(VI) by the live and dead cells of Kocuria sp. ASB107, a radio-resistant bacterium, was investigated. The effect of contact time, solution pH, initial hexavalent chromium concentration and adsorbent dose on biosorption efficiency was studied. Also, live cells were further immobilised on various matrices by different techniques and then were examined for tolerance to chromium biosorption. Experimental results indicated that the removal efficiency of chromium increased with decrease in pH, initial Cr(VI) concentration, and also increase in adsorbent dose and the contact time. The maximum removal efficiency of live and dead cells at acidic pH of 4–4.5, contact time of 24 hours, adsorbent dose 1.6?g/100?mL and initial chromium concentration 25?mg/L were 82.4% and 69.2%, respectively. The adsorption data was described well by Langmuir isotherm model. Among all immobilisation techniques tested, cross-linking showed the highest biosorption of Cr(VI). Results indicated that live cells of Kocuria sp. ASB107 were better than dead ones.  相似文献   

15.
Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden   总被引:1,自引:0,他引:1  
Urban soils are complex systems due to human activities that disturb the natural development of the soil horizons and add hazardous elements. Remediation projects are common in urban areas and guideline values are set to represent a desired level of elements. However, the natural content of trace elements may not always equal the desired levels. In this study, an attempt is made to distinguish between metals that are present in the soil due to natural origins and to anthropogenic origins. Seventy-five soil samples of the 0–5, 5–10 and 10–20 cm layers were collected from 25 sites in urban areas of Uppsala City and analysed for aluminium (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), tungsten (W) and zinc (Zn) using aqua regia for digestion. In order to highlight elements of geological origin, the results were compared to a similar study carried out in Gothenburg City, which has about three times as many inhabitants as Uppsala and has a more industrial history. A cluster analysis was also performed to distinguish between elements of natural and anthropogenic origin. Contents of As, Al, Fe, Cr, Ni, Mn and W in Uppsala were concluded to be of mainly geological origin, while contents of Cd, Cu, Zn, Pb and Hg seemed to have been impacted upon by mainly urban activities.  相似文献   

16.
In this study concentrations of selected metals viz., Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Pb and Zn in surface soils of Sialkot city known worldwide for tanneries and pharmaceutical industries were measured to assess the status of urban soil pollution and to identify sources of contamination. Hierarchical cluster analysis (HACA) indicated concentrations of Mg and Ca related to parent rock material, Cd, Co, and Pb with traffic related activities, Cr, Cu, Ni and Zn either associated with automobiles activities or industrial pollution and Fe, K and Na related with anthropogenic activities or lithogenous materials. Correlation analyses and principal component analysis based on factor analysis confirmed the results of HACA. Spatial distribution maps exhibited relatively higher concentrations of Cd, Co, Cu, Ni, Pb, Cr and Zn along traffic routes in the city and streams. The results highlighted concentration of Cd, Ni, Cr, Zn, and Pb measured in urban soil exceeded the permissible limit of surface soils and advocated an imperative need for detailed baseline investigations of spatial distribution of heavy metals and other contaminants for the formulation of geochemical database that should be made available to stakeholder involved in monitoring, assessment and conservation of soil contamination for future planning and management of the Sialkot city.  相似文献   

17.

Paddy soil contamination is directly linked to human dietary exposure to toxic chemicals via crop consumption. In Korea, rice paddy fields are often located around industrial complexes, a major anthropogenic source of metals. In this study, rice paddy soils were collected from 50 sites in three industrial cities to investigate the contamination characteristics and ecological risk of metals in the soils. The cities studied and their major industries are as follows: Ulsan (petrochemical, nonferrous, automobile, and shipbuilding), Pohang (iron and steel), and Gwangyang (iron and steel, nonmetallic, and petrochemical). Thirteen metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) were analyzed using inductively coupled plasma–optical emission spectrometry (ICP–OES). The mean concentration of Cd (1.98 mg/kg) exceeded the soil quality guideline of Canada (1.4 mg/kg), whereas concentrations of other metals were under the standards of both Korea and Canada. Generally, levels of metal concentrations decreased with increasing distance from industrial complexes. Among the three cities, Pohang showed high concentrations of Zn (142.2 mg/kg), and Ulsan and Gwangyang showed high concentrations of Cr (33.9 mg/kg) and Ba (126.4 mg/kg), respectively. These contamination patterns were influenced by the different major industries of each city, which was clearly demonstrated by the principal component analysis results. Pollution indices suggested that As, Cd, Pb, and Zn were enriched in the paddy soils via anthropogenic activities. Comprehensive potential ecological risk indices were at considerable levels for most sites, especially because of major contributions from As and Cd, which can pose potential ecological threats.

  相似文献   

18.
向海湿地河道上下游土壤重金属污染程度分析   总被引:3,自引:0,他引:3  
以向海湿地河道上、下游土壤沉积物为研究对象,以Al元素作为标准化元素,通过对重金属元素富集因子的分析,研究了Cu、Ni、Mn、Fe、Ba、Cr等6种重金属元素的人为污染状况及分级。结果表明,该区土壤沉积物中重金属元素均受到不同程度的人为污染影响,部分层面Ni、Ba等重金属元素污染程度达到显著水平,造成这种现象的主要原因是富含重金属的霍林河上游矿源物质的沉积及人类对湿地开发活动的历史变迁过程;此外,径流淹没频率不同造成了两断面土壤沉积类型和沉积效果的不同,使得受水文影响较大的上游断面的人为污染程度大于受影响较小的下游断面,说明向海湿地对人为污染具有一定的缓冲能力,或向海湿地具有较强的净化和过滤功能。  相似文献   

19.
Surface and profile Phaeozem soil samples from 31 locations affected by various anthropogenic activities such as mining, chemical manufacturing, traffic emission and pesticide application were collected in Heilongjiang Province and Jilin Province, northeast China. The range of total concentrations of four heavy metals Cd, Pb, Cu and Zn in the soil was 0.011–3.137, 10.31–62.34, 9.74–51.21 and 39.54–247.59 mg kg−1, respectively, determined using the acidic digestion procedure. Four methods including single contamination evaluation, background concentration comparison, surface/subsurface concentration comparison and exchangeable fraction evaluation were used to evaluate the extent of metal contamination in Phaeozem. The results indicated that different activities increased the concentrations of the heavy metals in surface soils, where high concentrations of cadmium and lead were found close to chemical plants and in the suburbs of the investigated cities. The four methods showed a general trend of increased soil contamination with heavy metals. Cadmium was of the most concern compared with the other contaminated elements in the study area, due to the long-term phosphatic fertilizer utilization and industrial activities. The proper evaluation method for cadmium contamination was the background concentration comparison, while for zinc and copper was the single contaminative index evaluation. Cadmium and lead could be the potential environmental risk in the Phaeozem area based on the different evaluations.  相似文献   

20.
Given the wide industrial use of chromium (Cr) and its environmental contamination, chromium represents a risk to humans exposed to the metal. Considering that Cr(VI) is a potent oxidizing agent that increases intracellular oxidation and DNA damage, it would be worth considering the pretreatment of cells with antioxidants as a means of preventing Cr(VI)-induced toxicity. The objective of this study was to pretreat yeast cells with the water-soluble vitamin E analogue Trolox in an effort to increase cell tolerance against reactive chromium and reactive oxygen species formed during Cr(VI) reduction. Results revealed a decrease in Cr(VI)-induced cytotoxicity and mitotic gene conversions in Trolox-pretreated cells. The protective effect of Trolox in Cr(VI) induced genotoxicity was confirmed also with the prokaryotic Salmonella typhimurium SOS/umu test. Pretreatment of cells with Trolox (1) increased total Cr bioaccumulation, (2) decreased Cr(VI)-induced intracellular oxidation, (3) decreased Cr(V) persistence and (4) increased OH? formation in yeast extracts. These findings might be useful in directing future investigations concerning the use of Trolox as a human antioxidant supplement, and in clinical applications related to Cr-induced genotoxicity in occupational and environmental situations where chromium is a problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号