首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective.  相似文献   

2.
ABSTRACT: Nonirrigated crop yields and forage production are limited by low and variable precipitation in the southern Great Plains. Precipitation variation involves production risks, which can be reduced by considering probability of precipitation, precipitation retention, and soil erosion under various production systems. The objective of this study was to probabilistically quantify the impact of precipitation variations, land use, cropping, and tillage systems on precipitation retention and soil erosion. Five 1.6 ha watersheds that had 3 to 4 percent slopes, and similar silt loam soils were selected. One was kept in native grass, and the others were planted into winter wheat (Triticum aestivum L.) under different cropping and tillage systems. Daily runoff and soil erosion were measured at the outlet of each watershed. Precipitation distributions exhibited great seasonal and interannual variations, and precipitation retention distributions resembled those of precipitation. Cropping and tillage systems affected precipitation retention but much less than did precipitation variations. Available soil water storage, which was largely controlled by ET, played an important role in retaining precipitation. This indicates that cropping systems should be adjusted to precipitation patterns, if predictable, for better soil water use. Land use and cropping and tillage systems had a much greater impact on soil erosion than on precipitation retention. Soil erosion risks, which were proportional to the levels of tillage disturbance, were mainly caused by a few large storms in summer, when surface cover was low. This study explored a novel approach for evaluating production risks associated with insufficient precipitation retention and excessive soil erosion for certain crops or cropping systems under assumed precipitation conditions.  相似文献   

3.
The great majority of farmers in Latin America are peasants who still farm small plots of land, usually in marginal environments utilizing traditional and subsistence methods. The contribution of the 16 million peasant units to regional food security is however substantial. Research has shown that peasant systems, which mostly rely on local resources and complex cropping patterns, are reasonably productive despite their small land endowments and low use of external inputs. Moreover analysis of NGO-led agroecological initiatives show that traditional crop and animal systems can be adapted to increase productivity by biologically re-structuring peasant farms which in turn leads to optimization of key agroecosystem processes (nutrient cycling, organic matter accumulation, biological pest regulation, etc.) and efficient use of labour and local resources. Examples of such grassroots projects are herein described to show that agroecological approaches can offer opportunities to substantially increase food production while preserving the natural resource base and empowering rural communities.  相似文献   

4.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

5.
/ Land use/land cover classifications for 1973 and 1991, derived from the interpretation of satellite imagery, are quantified on the basis of biophysical land units in a study area in southeastern Australia. Nutrient export potentials are estimated for each land unit based on their composition of land use/land cover classes. Spatial and temporal comparisons are made of the land units based on the calculated pollution hazard indicators to provide an insight into changes in the state of the environment and the regional significance of land use changes. For example, one ecosystem, unique to the study, showed a large increase in pollution hazard over the study period as a manifestation of an 11-fold rise in cleared area and an expansion of cropping activities. The benefits to environmental management in general are discussed.KEY WORDS: Land cover change; Nutrient export; Environmental condition; Pollution hazard; Agricultural pollution; Nonpoint source pollution; Diffuse pollution; Environmental degradation  相似文献   

6.
In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/-9.2)ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation.  相似文献   

7.
The objective of this study was to identify the effect of different land uses in peri-urban agriculture on the soil properties. Soil health indicators were evaluated in the top 10 cm at five tilled agricultural sites involving different cropping systems and use of agrochemicals within the peri-urban agricultural areas of Yaounde, Cameroon, and compared with a native forest land. The experimental data showed that the selected indicators were sensitive to cropping practice. Most cropped land had significantly higher total C, available N and P concentrations, soil pH, electrical conductivity, salinity, biomass C and P, dehydrogenase, beta-glucosidase, and acid phosphatase activities. Land producing corn (Zea mays L.) and sugarcane (Saccharum officinarum L.) differed from that producing tomatoes (Lycopersicon esculentum Mill.), but cultivation of these crops has significantly impacted native soil quality. However, phenol oxidase, microbal biomass C/organic C (C(mic)/C(org)), and microbial biomass C/microbial biomass P (C(mic)/P(mic)) were negatively affected. These appeared to be more consistent indicators of negative management causing changes to soil health and may be suitable for an early appraisal of soil health.  相似文献   

8.
论我国耕地保护与粮食安全   总被引:13,自引:0,他引:13  
耕地资源关系到国家经济发展、社会稳定和粮食安全。对我国而言,经济飞速增长,人地矛盾十分突出,每寸土地都显得弥足珍贵。在收集我国1997-2005年耕地面积变化的资料,并作相关分析的基础上,研究得出我国耕地资源呈现不断减少的趋势,其中生态退耕和非农建设用地占用耕地是其变化的主要原因。耕地资源的减少引起了粮食总产量和单产量的变化,而耕地复种指数也是影响耕地产量的主要原因之一。在此基础上分析了耕地保护和粮食安全的内在关系,并提出适合我国的耕地资源可持续利用与粮食安全的措施。  相似文献   

9.
South Africa's moist grassland harbours globally significant biodiversity, supplies essential ecosystem services, supports crop and livestock agriculture, forestry and settlement, yet is poorly conserved. Ongoing transformation and limited opportunity for expanding the protected area network require instead that biodiversity conservation is 'mainstreamed' within other land uses. This exercise sought to identify the relative compatibility of 10 land uses (conservation, livestock or game ranching, tourism/recreation, rural settlement, dryland cropping, irrigated cropping, dairy farming, plantation forestry, and urban settlement) with maintaining biodiversity integrity. This was assessed using 46 indicators for biodiversity integrity that covered landscape composition, structure, and functioning. Data was integrated into a single measure per land use through application of the analytic hierarchy process, with supporting information gained from interviews with experts. The rank order of importance amongst indicators was landscape structure, functioning and composition. Consistent differences among land uses for all three categories revealed two clear groupings. Conservation, livestock or game ranching had the lowest impact and retained substantial natural asset, while that for tourism/recreation was intermediate. All other land uses had a severe impact. Impact on biodiversity integrity depended mainly on the extent of transformation and fragmentation, which accounted for the greatest impact on habitats and species, and impairment of landscape functioning. It is suggested that a strategic intervention for maintaining biodiversity integrity of moist grassland is to support livestock or game ranching and limit ongoing urban sprawl.  相似文献   

10.
A survey of land degradation was undertaken in New South Wales, Australia during 1987–1988. The aims of the survey were to assess the location, extent, and severity of ten forms of degradation and to present the data in map and statistical form. Sample points were located on a regular grid. The method was designed so that data could be acquired from aerial photographs, expert local knowledge, and limited field checking. Individual statewide maps were prepared for each form of degradation. Map data were shown in pixel form. Sheet and rill erosion and soil structure decline were confined mostly to lands used for cropping. Gully erosion was commonly found across the state, while mass movement was confined to steeper lands. There were three severe areas of dryland salinity; irrigation salinity was mapped in parts of the southern irrigation lands. Induced soil acidity was severe in some cropping and pasture lands. Absence of tree regrowth was a noticeable feature of lands used for cropping. The survey enabled community awareness of the problems of land degradation to be increased, in addition to assisting regional land managers in resource allocation. The survey also provided the basis for the future location of sites that could be used to monitor the trends in the status of land degradation.  相似文献   

11.
ABSTRACT: Climate change has the potential to have dramatic effects on the agricultural sector nationally and internationally as documented in many research papers. This paper reports on research that was focused on a specific crop growing area to demonstrate how farm managers might respond to climate-induced yield changes and the implications of these responses for agricultural water use. The Hadley model was used to generate climate scenarios for important agricultural areas of Georgia in 2030 and 2090. Linked crop response models indicated generally positive yield changes, as increased temperatures were associated with increased precipitation and CO2. Using a farm management model, differences in climate-induced yield impacts among crops led to changes in crop mix and associated water use; non-irrigated cropland received greater benefit since irrigated land was already receiving adequate moisture. Model results suggest that farm managers will increase cropping intensity by decreasing fallowing and increasing double cropping; corn acreage decreased dramatically, peanuts decreased moderately and cotton and winter wheat increased. Water use on currently irrigated cropland fell. The potential for increased water use through conversion of agriculturally important, but currently non-irrigated, growing areas is substantial.  相似文献   

12.
Lakes,Wetlands, and Streams as Predictors of Land Use/Cover Distribution   总被引:2,自引:0,他引:2  
The importance of the surrounding landscape to aquatic ecosystems has been well established. Most research linking aquatic ecosystems to landscapes has focused on the one-way effect of land on water. However, to understand fully the complex interactions between aquatic and terrestrial ecosystems, aquatic ecosystems must be seen not only as receptors of human modification of the landscape, but also as potential drivers of these modifications. We hypothesized that the presence of aquatic ecosystems influences the spatial distribution of human land use/cover of the nearby landscape (≤1 km) and that this influence has changed through time from the 1930s to the 1990s. To test this hypothesis, we compared the distribution of residential, agricultural, and forested land use/cover around aquatic ecosystems (lakes, wetlands, and streams) to the overall regional land use/cover proportion in an area in southeast Michigan, USA; we also compared the distribution of land use/cover around county roads/highway and towns (known determinants of many land use/cover patterns) to the regional proportion. We found that lakes, wetlands, and streams were strongly associated with the distribution of land use/cover, that each ecosystem type showed different patterns, and that the magnitude of the association was at least as strong as the association with human features. We also found that the area closest to aquatic ecosystems (<500 m) was more strongly associated with land use/cover distribution than areas further away. Finally, we found that the strength of the association between aquatic ecosystems and land use/cover increased from 1938 to 1995, although the overall patterns were similar through time. Our results show that a more complete understanding is needed of the role of aquatic ecosystems on the distribution of land use/cover.  相似文献   

13.
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.  相似文献   

14.
Land abandonment is an important cause of changes in landscape patterns in the Mediterranean area. There is a need to monitor land use and land cover changes in order to provide quantitative evidence of the relationship between land abandonment and the formation of new landscape patterns. Appropriate management policies to encourage sustainable development can then be developed. This paper describes how to monitor landscape dynamics using different temporal land use and land cover data generated from field survey and airborne information. The results showed that the abandonment of agricultural land generally results in an increase of vegetation biomass. This process leads to homogenization of the landscape. In addition, abandonment promotes fragmentation of agricultural land. Based on these results, the paper discusses the implications for rural management policies concerning the abandonment of agricultural land and suggests recommendations for the development of such policies.  相似文献   

15.
Appropriate land management decisions are important for current and future use of the land to ensure its sustainability. This requires that land management units (LMUs) be specified to enable the identification of specific parameters employed in decision making processes. This paper presents the development of a conceptual model, within geographic information systems (GIS), for defining and assessing LMUs from available biophysical information. The model consists of two main components (sub-models): land quality-based suitability analysis and soil erosion estimation. Using a fuzzy set methodology, the first sub-model was constructed to derive a land suitability index (LSI) for a cropping land utilization type. The LSI thus highlights the suitability grades of every pixel in the study area on a continuous basis. A sub-model of soil erosion was established based on the Revised Universal Soil Loss Equation (RUSLE) utilising the same spatial data bases employed for structuring the LSI. Using a soil loss tolerance principle, a fuzzy membership function of average annual soil loss (called soil loss index, SLI) was established, leading to compatibility between LSI and SLI for data integration. LMUs were then derived from various combinations of LSI and SLI. The methodology developed shows the significance of the model for refining available land suitability evaluation systems, which take no account of expected land degradation (from erosion) due to a nominated land use. It also provides a valuable guideline for cost-effective GIS applications in the identification and assessment of homogeneous land units, using available spatial information sets, at a finer scale.  相似文献   

16.
This paper develops an approach to modelling land use change that links model selection and multi-model inference with empirical models and GIS. Land use change is frequently studied, and understanding gained, through a process of modelling that is an empirical analysis of documented changes in land cover or land use patterns. The approach here is based on analysis and comparison of multiple models of land use patterns using model selection and multi-model inference. The approach is illustrated with a case study of rural housing as it has developed for part of Gallatin County, Montana, USA. A GIS contains the location of rural housing on a yearly basis from 1860 to 2000. The database also documents a variety of environmental and socio-economic conditions. A general model of settlement development describes the evolution of drivers of land use change and their impacts in the region. This model is used to develop a series of different models reflecting drivers of change at different periods in the history of the study area. These period specific models represent a series of multiple working hypotheses describing (a) the effects of spatial variables as a representation of social, economic and environmental drivers of land use change, and (b) temporal changes in the effects of the spatial variables as the drivers of change evolve over time. Logistic regression is used to calibrate and interpret these models and the models are then compared and evaluated with model selection techniques. Results show that different models are 'best' for the different periods. The different models for different periods demonstrate that models are not invariant over time which presents challenges for validation and testing of empirical models. The research demonstrates (i) model selection as a mechanism for rating among many plausible models that describe land cover or land use patterns, (ii) inference from a set of models rather than from a single model, (iii) that models can be developed based on hypothesised relationships based on consideration of underlying and proximate causes of change, and (iv) that models are not invariant over time.  相似文献   

17.
The study investigated the response of surface water quality to urbanization in Xi'an, China. We qualitatively described the change in urban land use from 1996 to 2003, analyzed the status of the surface water environment, and constructed a model of urban expansion to simulate the water environment's response to urbanization. Our results revealed that patterns of land use changed dramatically, the rate of economic growth exceeded that of urbanization during the study period, and increasing urban land use was correlated with fluctuations in water quality. The simulated results suggested that urbanization had reached the environmental carrying capacity based on the average land utility and the marginal costs of pollution.  相似文献   

18.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   

19.
Changing Farmers' Land Management Practices in the Hills of Nepal   总被引:2,自引:2,他引:0  
This paper sheds light on changing farmers' land management practices in two mountain watersheds, with and without external assistance, in the western hills of Nepal. Information used in the analysis were obtained through a survey of 300 households, group discussion, key informant interviews, and field observation conducted during April–September 1999. Confronted with ever-decreasing landholding size due to a steadily growing population and scarcity of nonfarming employment opportunities, farmers in both watersheds have increasingly adopted assorted types of structural and biological measures to control soil erosion, landslides, gully expansion, and soil nutrient loss to maintain or even enhance land productivity. Adoption of gully control measures, construction of the retention walls, alley cropping, use of vegetative measures for landslide control, mulching, and use of green manure and chemical fertilizers are found significantly high in the project area due to the provision of technical and financial support, whereas composting is found significantly high in the nonproject area. Different from the traditionally held beliefs, population pressure on a finite land resource has brought positive change in land management. However, the experience from both watersheds indicates that there is limit to the extent that resource poor farmers can respond to land degradation without any external assistance. Required is the arrangement for appropriate polices and support services and facilities enabling farmers to adopt locationally suitable and economically attractive land management technologies.  相似文献   

20.
Guangzhou city in South China has experienced an accelerated urban development since the 1980s. This paper examines the impact of the urban development on urban heat islands through a historical analysis of urban-rural air temperature differences. Remote sensing techniques were applied to derive information on land use/cover and land surface temperatures and to assess the thermal response patterns of land cover types. The results revealed an overriding importance of urban land cover expansion in the changes in heat island intensity and surface temperature patterns. Urban development was also related to a continual air temperature increase in the 1980s and 1990s. The combined use of satellite-derived vegetation and land cover distributions with land surface temperature maps provides a potential useful tool for many planning applications. The city's greening campaigns and landscaping designs should consider the different cooling effects of forest, shrubs and grassy lawns for temperature control and should plant more tall trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号