首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.  相似文献   

2.
ABSTRACT: Surface water, groundwater, and groundwater discharge quality surveys were conducted in Cherrystone Inlet, on Virginia's Eastern Shore. Shallow groundwater below agricultural fields had nitrate concentrations significantly higher than inlet surface waters and shallow groundwater underlying forested land. This elevated nitrate groundwater discharged to adjacent surface waters. Nearshore discharge rates of water across the sediment-water interface ranged from 0.02 to 3.69 liters·m?2·hr?1 during the surveys. The discharge was greatest nearshore at low tide periods, and decreased markedly with increasing distance offshore. Vertical hydraulic heads, Eh, and inorganic nitrogen flux in the sediments followed similar patterns. Nitrate was the predominant nitrogen species discharged nearshore adjacent to agricultural land use, changing to ammonium farther offshore. Sediment nitrogen fluxes were sufficient to cause observable impacts on surface water quality; nitrate concentrations were up to 20 times greater in areas of groundwater discharge than in the main stem inlet water. Based on DIN:DIP ratios, nitrogen contributions from direct groundwater discharge and tidal creek inputs appear to be of significant ecological importance. This groundwater discharge links land use activity and the quality of surface water, and therefore must be considered in selection of best management practices and water quality management strategies.  相似文献   

3.
Nitrate pollution has caused serious environmental concerns, but its control is often complicated by its diffuse nature. In most cases, nitrate control has been linked to either nitrogen input or leaching. By incorporating the relationship among land use, fertilizer application, and nitrogen leaching into a linear programming model, this analysis investigates the comparative effectiveness between input and leaching control. The empirical results from a groundwater catchment in eastern England suggest that leaching control can be more cost-effective in nitrate reduction than fertilizer input control. The implications for control of nitrate leaching through incentives systems are discussed.  相似文献   

4.
ABSTRACT: This paper presents a modeling approach based on a geographic information system (GIS) to estimate the variability of on‐ground nitrogen loading and the corresponding nitrate leaching to ground water. The methodology integrates all point and nonpoint sources of nitrogen, the national land cover database, soil nitrogen transformations, and the uncertainty of key soil and land use‐related parameters to predict the nitrate mass leaching to ground water. The analysis considered 21 different land use classes with information derived from nitrogen sources such as fertilizer and dairy manure applications, dairy lagoons, septic systems, and dry and wet depositions. Simulations were performed at a temporal resolution of one month to capture seasonal trends. The model was applied to a large aquifer of 376 square miles in Washington State that serves more than 100,000 residents with drinking water. The results showed that dairy manure is the main source of nitrogen in the area followed by fertilizers. It was also seen that nitrate leaching is controlled by the recharge rate, and there can be a substantial buildup of soil nitrogen over long periods of time. Uncertainty analysis showed that denitrification rate is the most influential parameter on nitrate leaching. The results showed that combining management alternatives is a successful strategy, especially with the use of nitrification inhibitors. Also, change in the land use pattern has a noticeable impact on nitrate leaching.  相似文献   

5.
The weights of evidence (WofE) modeling technique has been used to analyze both natural and anthropogenic factors influencing the occurrence of high nitrate concentrations in groundwater resources located in the central part of the Po Plain (Northern Italy). The proposed methodology applied in the Lodi District combines measurements of nitrate concentrations, carried out by means of a monitoring net of 69 wells, with spatial data representing both categorical and numerical variables. These variables describe either potential sources of nitrate and the relative ease with which it may migrate towards groundwater. They include population density, nitrogen fertilizer loading, groundwater recharge, soil protective capacity, vadose zone permeability, groundwater depth, and saturated zone permeability. Once conditional dependence problems among factors have been solved and validation tests performed, the statistical approach has highlighted negative and positive correlations between geoenvironmental factors and nitrate concentration in groundwater. These results have been achieved analysing the calculated statistical parameters (weights, contrasts, normalized contrasts) of each class by which each factor has been previously subdivided. This has permitted to outline: the overall influence each factor has on the presence/absence of nitrate; the range of their values mostly influencing this presence/absence; the most and least critical combination of factor classes existing in each specific zone; areas where the influence of impacting factor classes is reduced by the presence of not impacting factor classes. This last aspect could represent an important support for a correct land use management to preserve groundwater quality.  相似文献   

6.
ABSTRACT: A combined economic and water quality modeling framework was used to evaluate impacts of alternative policies and management practices on reducing nitrate movement to groundwater for dairy farms in Rockingham County, Virginia. The analysis considers three on-farm manure storage options, cost-sharing programs for purchasing manure storage facilities, restrictions on nitrogen application rates, and a tax on commercial fertilizer. The CREAMS model was used to estimate nitrate leaching from the crop root zone for various nutrient (and manure) management practices, based on timing and rate of manure and fertilizer applications. The mixed-integer programming economic model considers water quality, policy, and economic constraints in comparing the profitability of alternative cropping and nutrient management systems that reduce groundwater contamination potential. The study provides both the environmental and economic effects of better management of dairy waste.  相似文献   

7.
Abstract: In this study, a set of nitrogen reduction strategies were modeled to evaluate the feasibility of improving water quality to meet total maximum daily loads (TMDLs) in two agricultural watersheds. For this purpose, a spatial‐process model was calibrated and used to predict monthly nitrate losses (1994‐96) from Sand and Bevens Creek watersheds located in south‐central Minnesota. Statistical comparison of predicted and observed flow and nitrate losses gave r2 coefficients of 0.75 and 0.70 for Sand Creek watershed and 0.72 and 0.67 for Bevens Creek watershed, respectively. Modeled alternative agricultural management scenarios included: six different N application rates over three application timings and three different percentages of crop land with subsurface drainage. Predicted annual nitrate losses were then compared with nitrate TMDLs assuming a 30% reduction in observed nitrate losses is required. Reductions of about 33 (8.6 to 5.8 kg/ha) and 35% (23 to 15 kg/ha) in existing annual nitrate losses are possible for Sand and Bevens Creek watersheds, respectively, by switching the timing of fertilizer application from fall to spring. Trends towards increases in tile‐drained crop land imply that attaining nitrate TMDLs in future may require other alternative management practices in addition to fertilizer management such as partial conversion of crop land to pasture.  相似文献   

8.
To ensure regional self-sufficiency and adequate rural livelihoods in the North China Plain (NCP), tremendous efforts were made over the last two decades by the Chinese government to raise the productivity of crops, despite increasing pressure on the land caused by a growing population. Emphasis was placed on high external input use, especially for wheat, maize and cotton, ignoring the particularities and limitations of the natural resource base. This study assesses the sustainability of current soil fertility management practices on the basis of selected location-specific indicators, such as fertilizer use, soil pH, soil organic matter content, levels of nitrogen (N), phosphorus (P) and potassium (K) in the soil, and identifies determining factors of the yield and environmental impacts of inputs use. Data used for the analysis were gathered from soil tests, groundwater and chive plant tests, household surveys, and statistical yearbooks. Stepwise multiple regression analysis is applied to determine factors affecting the yields. The study revealed unbalanced use of nutrients. Organic fertilizers (manure, crop residues) and K are insufficiently applied, whereas N and P are considerably overused in comparison with recommended doses. The intensive cropping in the area using high-input technologies -particularly fertilizer- has resulted in a remarkable general enhancement of crop productivity and improvement of soil fertility over the years. The yield of wheat and maize has increased 173 and 180 kg ha(-1) annually from 1982 to 2000, respectively and soil fertility status also improved over the years and the values of the selected indicators are within the borderline for sustainability. Irrigation water, FYM application, and total labor used during the cultivation season (with the exception of cotton and chive) for production are the main factors determining the yields of four major crops under study, while popularly and overly used N did not appear to be a significant factor affecting the yield. Its overuse, however, leads to leaching of nitrate into groundwater and nitrate enrichment of vegetables. Of 20 groundwater samples, 16 showed nitrate levels between 55 and 180 mg l(-1), which exceeds recommendations for drinking water (相似文献   

9.
Nitrate losses from subsurface tile drained row cropland in the Upper Midwest U.S. contribute to hypoxia in the Gulf of Mexico. Strategies are needed to reduce nitrate losses to the Mississippi River. This paper evaluates the effect of fertilizer rate and timing on nitrate losses in two (East and West) commercial row crop fields located in south-central Minnesota. The Agricultural Drainage and Pesticide Transport (ADAPT) model was calibrated and validated for monthly subsurface tile drain flow and nitrate losses for a period of 1999-2003. Good agreement was found between observed and predicted tile drain flow and nitrate losses during the calibration period, with Nash-Sutcliffe modeling efficiencies of 0.75 and 0.56, respectively. Better agreements were observed for the validation period. The calibrated model was then used to evaluate the effects of rate and timing of fertilizer application on nitrate losses with a 50-yr climatic record (1954-2003). Significant reductions in nitrate losses were predicted by reducing fertilizer application rates and changing timing. A 13% reduction in nitrate losses was predicted when fall fertilizer application rate was reduced from 180 to 123 kg/ha. A further 9% reduction in nitrate losses can be achieved when switching from fall to spring application. Larger reductions in nitrate losses would require changes in fertilizer rate and timing, as well as other practices such as changing tile drain spacings and/or depths, fall cover cropping, or conversion of crop land to pasture.  相似文献   

10.
ABSTRACT: The Hydrologic Simulation Program‐Fortran (HSPF) was calibrated and used to assess the future effects of various land development scenarios on water quality in the Polecat Creek watershed in Caroline County, Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed stream flow and water quality data collected at the watershed outlet and the outlets of two sub water sheds. Using the county's Comprehensive Plan, land use scenarios were developed by taking into account the trends and spatial distributions of future development. The simulation results for the various land use scenarios indicate that runoff volume and peak rate increased as urban areas increased. Urbanization also increased sediment loads mainly due to increases in channel erosion. Constituent loads of total Kjeldal nitrogen, orthophosphorus, and total phosphorous for Polecat Creek watershed slightly decreased under future development scenarios. These reductions are due to increases in urban areas that typically contribute smaller quantities of nitrogen and phosphorous, as compared to agricultural areas. However, nitrate loads increased for the future land use scenarios, as compared to the existing land use. The increases in nitrate loads may result from increases in residential land and associated fertilizer use and concurrent decreases in forested land. The procedures used in this paper could assist local, state, and regional policy makers in developing land management strategies that minimize environmental impacts while allowing for future development.  相似文献   

11.
The elevated level of nitrate in groundwater is a serious problem in Korean agricultural areas. To control and manage groundwater quality, the characterization of groundwater contamination and identification of the factors affecting the nitrate concentration of groundwater are significant. The characterization of groundwater contamination at a hydrologically complex agricultural site in Yupori, Chuncheon (Korea) was undertaken by analyzing the hydrochemical data of groundwater within a statistical framework. Multivariate statistical tools such as cluster analyses and Tobit regression were applied to investigate the spatial variation of nitrate contamination and to analyze the factors affecting the NO3-N concentration in a shallow groundwater system. The groundwater groups from the cluster analysis were consistent with the land use pattern of the study area. The clustered group of a gentle-slope area with lower elevations showed higher NO3-N contamination of groundwater than groups on a hillside with higher elevations. Tobit regression results indicated that the agricultural activity in the vegetable fields and barns were the major factors affecting the elevated NO3-N concentration while the land slopes and elevations were negatively correlated with the NO3-N concentration. This shows that topographic characteristics such as land slopes and elevations should be considered to evaluate the land use impact on shallow groundwater quality.  相似文献   

12.
In response to concerns regarding the health of streams and receiving waters, the United States Environmental Protection Agency established a total maximum daily load for nitrogen in the Chesapeake Bay watershed for which practices must be in place by 2025 resulting in an expected 25% reduction in load from 2009 levels. The response of total nitrogen (TN) loads delivered to the Bay to nine source reduction and land use change scenarios was estimated using a Spatially Referenced Regression on Watershed Attributes model. The largest predicted reduction in TN load delivered to the Bay was associated with a scenario in which the mass of TN as fertilizer applied to agricultural lands was decreased. A 25% decrease in the mass of TN applied as fertilizer resulted in a predicted reduction in TN loading to the Bay of 11.3%, which was 2.5–5 times greater than the reductions predicted by other scenarios. Eliminating fertilizer application to all agricultural land in the watershed resulted in a predicted reduction in TN load to the Bay of 45%. It was estimated that an approximate 25% reduction in TN loading to the Bay could be achieved by eliminating fertilizer applied to the 7% of subwatersheds contributing the greatest fertilizer‐sourced TN loads to the Bay. These results indicate that management strategies aimed at decreasing loading from a small number of subwatersheds may be effective for reducing TN loads to the Bay, and similar analyses are possible in other watersheds.  相似文献   

13.
《环境质量管理》2018,27(4):79-86
The Seymour aquifer consists of unconfined outcrops of sand and gravel in a semiarid, agricultural region of north‐central Texas in the United States of America. Most water samples collected from the aquifer in 2015 had nitrate concentrations above the drinking water standard of 44.3 milligrams per liter (mg/L). Generally, areas with high nitrate concentration in 2010 remained high in 2015, although the median dropped by 3.9 mg/L. The largest decreases in nitrate concentration—up to 97 mg/L (60%)—were observed in wells with depths less than the median of 13.1 meters (m). However, other wells, including depths above and below the median, showed increases in nitrate concentration of up to 40 mg/L (42%). In 2015, chloride concentrations in six wells exceeded the secondary contaminant level of 250 mg/L, and one well had a chloride concentration of 1,810 mg/L. Past and ongoing agricultural practices, including cultivation of native grassland, application of fertilizer, and irrigation with nitrate‐contaminated groundwater, help sustain overall high nitrate concentrations within the aquifer. Local conditions governing nitrogen inputs and dilution result in significant improvement or worsening of the nitrate problem over relatively short timeframes. The pumping of groundwater from the aquifer may facilitate mixing with groundwater of increased salinity that has been affected by the dissolution of evaporites in underlying Permian bedrock.  相似文献   

14.
The 1991 EU Nitrate Directive was designed to reduce water pollution from agriculturally derived nitrates. England and Wales implemented this Directive by controlling agricultural activities within their most vulnerable areas termed Nitrate Vulnerable Zones. These were designated by identifying drinking water catchments (surface and groundwater), at risk from nitrate pollution. However, this method contravened the Nitrate Directive because it only protected drinking water and not all waters. In this paper, a GIS was used to identify all areas of groundwater vulnerable to nitrate pollution. This was achieved by constructing a model containing data on four characteristics: the quality of the water leaving the root zone of a piece of land; soil information; presence of low permeability superficial (drift) material; and aquifer properties. These were combined in a GIS and the various combinations converted into a measure of vulnerability using expert knowledge. Several model variants were produced using different estimates of the quality of the water leaving the root zone and contrasting methods of weighting the input data. When the final models were assessed all produced similar spatial patterns and, when verified by comparison with trend data derived from monitored nitrate concentrations, all the models were statistically significant predictors of groundwater nitrate concentrations. The best predictive model contained a model of nitrate leaching but no land use information, implying that changes in land use will not affect designations based upon this model. The relationship between nitrate levels and borehole intake depths was investigated since there was concern that the observed contrasts in nitrate levels between vulnerability categories might be reflecting differences in borehole intake depths and not actual vulnerability. However, this was not found to be statistically important. Our preferred model provides the basis for developing a new set of groundwater Nitrate Vulnerable Zones that should help England and Wales to comply with the EU Nitrate Directive.  相似文献   

15.
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed.  相似文献   

16.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

17.
A constructed wetland (CW) was strategically placed to treat nitrates in groundwater as part of a watershed‐based farmer engagement process. Using stream water quality data collected before and after installation, this CW was found to reduce stream concentrations of nitrogen from nitrate (NO3‐N) during the growing season by about 0.14 mg/l at mean streamflow, a 17% reduction. Based upon realistic ecological and economic assumptions, about 80 kg of NO3‐N were removed annually by the CW at a cost of around US$30/kg. This per unit cost is at the low range of small wastewater treatment plant costs for nitrates, but higher than the costs of reduced fertilizer application.  相似文献   

18.
为了明确氮肥形态对土壤养分流失通量及途径的影响,采用随机区组试验设计,利用模拟径流小区观测的方法,研究在地膜覆盖与不覆盖情况下氮肥形态对坡耕地雨季土壤养分流失通量及途径的影响。研究结果表明:壤中流氮、磷和钾的流失量分别占总径流流失量的71.30%、6.36%和8.85%,说明磷和钾流失的主要途径是地表径流,而氮流失的主要途径是壤中流,地膜覆盖降低酰胺态氮肥和缓控释肥处理氮素流失量,其中酰胺态氮肥处理地膜覆盖较不覆盖壤中流氮流失浓度和径流氮素流失量分别降低40.40%和29.32%。在无覆盖条件下,各处理径流氮素流失顺序表现为:酰胺态氮肥〉铵态氮肥〉缓控释肥〉硝态氮肥,施用硝态氮肥氮素流失量最低,较施用酰胺态氮肥氮素流失少40.86%。在地膜覆盖条件下,各处理径流中氮素流失顺序表现为:铵态氮肥〉酰胺态氮肥〉硝态氮肥〉缓控释肥,施用缓控释肥氮素流失量最低,较施用铵态氮肥氮素流失少59.60%。结果表明在四川紫色丘陵区为了有效控制水土养分流失,在肥料形态的选择上,以无覆盖条件下施用硝态氮肥较好,以地膜覆盖条件下施用缓控释肥较好。  相似文献   

19.
研究连续2年秸秆还田下氮肥用量对玉米产量、氮肥利用率及土壤硝态氮的影响,结果表明,玉米产量随着施氮量的增加逐渐增加,施氮量达到216 kg·hm^-2时,产量最高,施氮量超过216 kg·hm^-2时产量有降低的趋势。相同施氮处理玉米产量年际变化明显,2010年较2009年产量提高0.69%~4.75%。氮肥利用率、氮肥农学利用率和氮收获指数随着秸秆还田年限的增加,均有不同程度的增加。2年0~100 cm土层土壤硝态氮含量均以施氮240 kg·hm^-2最高,且有向土壤深层迁移的趋势,对浅层地下水构成潜在的威胁。与施氮240 kg·hm^-2相比,施氮168、192 kg·hm^-2和216 kg·hm^-2处理0~100 cm土壤无机氮残留量2年平均减少39.87%、35.84%和29.38%。相同施氮处理,0~100 cm土壤无机氮累积量2010年较2009年略有降低。综合考虑玉米产量、氮肥利用率与生态环境效益,该地区最适施氮量200 kg·hm^-2左右。  相似文献   

20.
ABSTRACT: Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981–1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号