首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental concerns regarding the potential contamination of soil, surface and ground water due to the presence of soluble metal species in the ash pond leachate is of great importance. Serial batch leaching was carried out simulating the rainwater condition of the study area to understand the behaviour of elements during leaching. The leachates were analysed for the elements Al, Ca, K, Mg, Na, P, S, Si, As, Ba, Fe, Mn, Mo, Ti, V, Pb, Zn, Co, Cr, Cu, Ni and Cd by inductively coupled plasma optical emission spectrometer (ICP-OES). It was found that Cd, Co, Cr and Ni did not leach from the ash while Cu and Pb concentrations were insignificant in the leachate regardless of liquid to solid (L/S) ratio. Most of the elements showed maximum concentrations at lower L/S ratio and then decreased with increasing L/S. The total cumulative concentrations of As, Mn and Mo were found to be higher than the World Health Organization (WHO) recommended values for drinking water while the concentrations of Fe, Mn and As exceeded the maximum allowable concentrations prescribed by the United States Environmental Protection Agency (USEPA). The pre and the post leached ash samples were analysed for morphology, specific surface area and mineralogical changes. Analysis of post-leached fly ash indicated changes in the specific surface area and morphology but no change in mineralogy.  相似文献   

2.
Changes in the species composition and a decrease in species diversity and total plant biomass along the gradient of soil pollution with heavy metals have been shown. Data on the concentrations of chemical elements (Zn, Cu, Cd, Pb, Co, Ni, Mn, Cr, and Fe) in the aboveground organs of herbaceous plants and the biomass of each species make it possible to estimate the role of higher producers in the incorporation of chemical elements into biogenic cycles in background zones and under conditions of chemical pollution. Plants of the composite family (Asteraceae) play the main role in accumulation of chemical elements. The results obtained indicate that natural ecosystems have mechanisms limiting excessive accumulation of chemical elements into the aboveground plant biomass.  相似文献   

3.
长三角典型城郊农田土壤-浙贝母重金属迁移特征研究   总被引:1,自引:0,他引:1  
城郊生态系统中土壤重金属分布及其在土壤—植物系统的迁移和富集特征是城乡共生体土壤安全研究的热点问题。以典型经济作物浙贝母(Fritillaria thunbergii)为例,基于野外采样和实验分析,对长三角代表性城郊农田中土壤—植物系统重金属的分布、富集和迁移特征开展研究。结果表明:受人类活动的影响,城郊农田土壤中重金属除Cr外,Cu、Zn、As、Cd和Pb的平均含量超过土壤背景值,并且不同重金属在空间分布上表现较高的空间异质性。除Cd和Cr外,浙贝母植株不同部位重金属含量表现为叶、茎显著高于鳞茎,叶中重金属含量可达到鳞茎的5~10倍,表明叶比鳞茎更易富集重金属。重金属迁移系数分析表明,Cr、Cu、Zn、As、Cd和Pb主要富集在浙贝母植株的地上部分,且不同重金属在植株中的迁移和富集能力具有较大的差异。浙贝母地上部分对Cr、As和Pb的富集能力较低,对Cu、Zn和Cd的富集能力相对较强。相比而言,鳞茎对不同重金属的富集能力均较弱,综合污染评价也表明,浙贝母鳞茎中重金属含量并未超过污染标准。  相似文献   

4.
Weekly average suspended particulate matter (SPM) concentrations were measured in four locations in Shiraz, Iran. Sampling was carried out from July 1999 and continued until July 2000. Instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS) methods were employed to obtain the weekly concentrations of Pb, Br, V, Ca, Al, Fe, Cu, Cr, Mn, Sc and Zn. The mean annual concentrations (in microg/m(3)) of 11 elements were found to be: Pb 0.545 (+/- 33.8%), Br 0.413 (+/- 34.1%), V 0.009 (+/- 28.2%), Ca 13.36 (+/- 24.5%), Al 2.56 (+/- 46.3%), Fe 2.62 (+/- 38.7%), Cu 0.122 (+/- 41.4%), Cr 0.015 (+/- 35.8%), Mn 0.053 (+/- 35.5%), Sc 0.0008 (+/- 37.5%) and Zn 0.085 (+/- 25.2%). The results of the study show that vehicle (traffic) pollution in Shiraz is higher than WHO and EPA standards and natural and industrial pollution is exceeding international guidelines in some seasons. The findings of the study confirm that the nearby cement factory has a major pollution impact on Shiraz air.  相似文献   

5.
It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies.  相似文献   

6.
The contents of Al, Ti, Fe, Cr, Cu, Zn, As, Se, Cd, Pb, and rare earth elements (REEs) were determined in mosses (the hydrophyte Fontinalis antipyretica and the epiphyte Pylaisia polyantha) by the inductively coupled plasma-mass spectrometry (ICP-MS) method. These plants were used for estimating the spatial distribution of heavy metals (HMs) in the basins of small and medium rivers of Vologda and Kostroma oblasts (Russia). It was shown that water mosses are good indicators of REEs and epiphytic mosses, of the pollutant metals Cu, Zn, Se, and Pb. The epiphytic and hydrophytic mosses did not differ in the macroelement (Al, Ti, and Fe) content.  相似文献   

7.
In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36muSva(-1) in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91muSva(-1). The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70muSva(-1). Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn=2.52 and Ba=1.33; old landfill site: Cr=1.88, Zn=3.64, and Ba=1.26; and recent landfill site: Cr=1.57, Zn=2.19, and Ba=1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste.  相似文献   

8.
This report presents the results of PAH, phenol, and selected trace element (Cd, Cu, Hg, Pb, S, and Zn) determinations on detailed soil profiles and associated plant bioindicators (including lichen Hypogymnia physodes, moss Hylocomium splendens, pine Pinus sylvetris) from the three most representative habitats in the Holy Cross Mts, south-central Poland. This study is only part of a larger ongoing environmental study that includes complex sulfur isotope and element determinations in three national parks in N, central and S parts of Poland. The highest concentrations of PAHs (1887 ppb) and numerous trace elements are found in the organic horizon-O and humic horizon-A of each soil type. Different plant species and their individual tissues reveal considerable variability in the concentration of PAHs, phenols and elements examined. Most of the H. physodes thalli also reveal higher concentrations of individual hydrocarbons and some elements (including S and Zn) than their host bark. The highest concentration levels of phenols (1217 ppb) are noted in the 1-year pine needles. Most of the PAHs and elements examined seem to be of anthropogenic origin. The only exception is the distribution pattern of elements in southwestern part of the study area, which is linked to the local bedrock geochemical anomaly. The results of this study indicate that the content of PAHs, Cd, Cu, Hg, Pb, S and Zn in the soils and plant bioindicators examined has not changed considerably since 1998.  相似文献   

9.
A five-step sequential extraction procedure was applied for the determination of the distribution of seven elements (Cd, Pb, Cr, Cu, Mn, Zn, Fe) in sediment samples collected at two lakes, Volvi and Koronia, located in N. Greece. Samples were taken in two seasons, and the average concentration of the elements was calculated. The accuracy evaluated by comparing total trace metal concentrations with the sum of the five individual fractions proved to be satisfactory. Based on the results determined at one sampling point in Koronia and two sampling points along the lake Volvi, it seems that the two lakes have not yet been polluted. There were no significant changes in the individual seasonal concentrations of elements in this monitoring period. Cd, Pb, Cu and Cr are associated with the oxidizable, carbonates and residual fractions. Zn and Fe are associated with residual and reducible fractions. The metals that we most easily extracted in the samples analysed in both lakes are Pb, Cr, Cd, Cu and also Mn in the case of Koronia lake.  相似文献   

10.
Food chain models are essential tools to assess risks of soil contamination in view of product quality including fodder crops and animal products. Here we link soil to plant transfer (SPT) models for potentially toxic elements (PTEs) including As, Ba, Cd, Co, Cu, Hg, Ni, Pb, Sb, U and Zn with models describing accumulation in animal organs. Current EU standards for food products and acceptable daily intake levels (ADI) for humans were used as critical limits. The combined model is used to assess the impact of soil contamination on animal health, product quality and human health using data from 100 arable fields. Results indicate that 42 existing arable fields near industrial and mining sites are unsuitable for animal grazing in view of food safety due to elevated intake of Cd, Cu, Hg and Pb by cows and sheep. At 10 sites daily intake levels of As by cows exceeded threshold concentrations regarding the quality of animal products.The food chain model also was used inversely to derive soil threshold concentrations in view of EU fodder standards. Calculated threshold levels in soil for As, Cd, Cu, Pb, Hg and Zn appear to be in line with those proposed or used in other EU countries. As such the approach applied here can form a conceptual basis for a more harmonized risk assessment strategy regarding the protection of animal and human health.  相似文献   

11.
The paper presents the first document regarding concentration, distribution and possible sources of selected trace elements (Cu, Fe, Mn, Zn, Cr, Co, Ni, Pb, Al, B and Ba) in core sediments (<63 micro particle size) from the lower stretch of Hugli (Ganges) estuary, northeast coast of Bay of Bengal by ICP-AES and EDXRF to evaluate geochemical processes influencing their distribution and possible environmental consequences. The levels of elements showed a wide range of variations in different core depths, in upper and lower intertidal zones as well as among three sampling stations. The most interesting feature of the study is the downward increase of concentrations of majority of the elements reaching overall maximum values at a depth of 20-28 cm in upper littoral zone of the site located in the extreme downstream stretch of the estuary. Values of organic carbon showed very strong positive correlations with most of the elements as revealed by correlation matrix (r) values. The interelemental relationship revealed the identical behavior of element during its transport in the estuarine environment. The overall variation in concentration can be attributed to differential discharge of untreated effluents originating from industrial, agricultural, and aquacultural sources as well as from domestic sewage along with the fishing and boating activities. The resulting compositional dataset was tested by principal component analyses and cluster analyses. Pollution load index (PLI) and index of Geoaccumulation (Igeo) revealed overall low values but the enrichment factors (EFs) for Pb were typically high for all the stations. The mean concentrations of Zn and to some extent Cu exceeded the Effects Range-Low (ER-L) values in the majority of the cases indicating that there may be some ecotoxicological risk to organisms living in sediments. The concentration of the trace elements reported in this work is useful as baselines for comparison in future sediment quality studies.  相似文献   

12.
Bio-monitoring of air quality in Amman City was investigated by analyzing 36 cypress tree (Cupressus semervirens L.) bark samples from three sites of different anthropogenic activities at the end of summer season 2001. Cypress barks were found to be a good bio-indicator for air pollution in arid regions. Variation in Pb, Zn, Mn, Cr, Ni, Cd, and Cu contents between sites was observed due to different types of activities. Traffic emissions were found to be the main source of heavy metal pollution in the atmosphere of Amman. Lead content was found to be the highest in highly traffic density areas. The industrial part of the city was characterized by high Zn, Mn, Cr, Ni, and Co contents. No significance variations were found in pH values of the bark between the sites. This was attributed to buffering effect of carbonate in the atmosphere originated from soil of the area.  相似文献   

13.
Natural variation in the level of micronutrients in plants and soils of the Polar Urals depending on the types of bedrocks has been evaluated. The contents of Fe, Mn, Zn, Cu, Ni, Cr, and Co have been determined by the atomic absorption method in 156 plant species of 25 families and in 38 soil samples. It has been found that the mineral composition of plant species varies depending on edaphic conditions. Taxon-specific features in the accumulation of chemical elements in plants of the Polar Urals have been revealed for the first time on the basis of a large amount of data.  相似文献   

14.
A survey of trace element residues in fish from the Savannah River near Savannah River Nuclear Plant was undertaken in 1982. Fish muscle tissue was incubated by the wet digestion method. Fifteen trace elements were determined by flame atomic absorption spectrophotometry analysi of the digests. It was found that As, Se, Mg, Hg, Ca, Zn, and Fe levels were relatively higher than Pb, Cd, Ni, Co, Cr, and Mn in all fish species. In addition, in all fish species it seems that Pb, Cd, Ni, Co, Cr, and Mn levels were relatively higher than Cs and Cu. Cs and Cu levels were negligible in all fish species analyzed. Trace element levels found in these fish species were not high enough to render them dangerous for human consumption.  相似文献   

15.
The study has investigated the levels of metal contamination in groundwater due to particulate matter fallout and leaching from ash pond and assigned contamination indices for the adjacent localities around an ash disposal site with application of geographic information systems (GIS). Fe, Ba, Cu, Mn, S, Pb, V, and Zn were found to be the major contaminants in groundwater. Enrichment factors (EF) of these elements with respect to the United States Environmental Protection Agency (USEPA) maximum contaminant levels show high values for Mn, Fe, and Pb in groundwater. The zone of attenuation for Ba, Fe, Cu, Mn, S, and Zn in groundwater is about 600-900 m from the ash pond, while Pb did not show any significant attenuation even at a distance of 1200 m. Tube wells around Rankasingha and Kukurhanga villages are most contaminated whereas open wells of Lachhmanpur, Kaniapada, and Kurudul villages showed higher degrees of contamination.  相似文献   

16.
The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Zn > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb > Co > Cr > Cu > Cd, respectively.  相似文献   

17.
为揭示城市化、工业化等人为活动对土壤环境质量的影响,选择上海城郊结合部为研究区域,采用地统计学方法对表层土壤样品Cu、Zn、Pb、Cr、Mn 5种重金属的空间变异结构和分布特征进行了分析。结果表明:土壤Cu、Cr、Mn、Pb、Zn均属中等变异,土壤Mn含量服从正态分布,土壤Cr、Cu、Pb、Zn含量服从对数正态分布;半方差函数模型拟合结果显示土壤Mn符合指数模型,土壤Cr、Cu、Pb、Zn符合线性模型、其中土壤Cu、Pb、Zn为纯块金效应模型,反映了城郊结合部土壤污染空间变异的复杂性。通过泛克里格插值可直观反应表层土壤重金属含量空间分布特征,发现土壤Cr、Mn呈岛状,土壤Cu、Pb、Zn呈多岛状分布的特点,工业和交通污染源是影响土壤重金属空间分布的重要因素  相似文献   

18.
The leaves of Robinia pseudo-acacia L. (Fabaceae) were evaluated as a biomonitors of heavy metal contamination in Denizli city, Turkey. Concentrations of Fe, Zn, Pb, Cu, Mn and Cd were determined in washed and unwashed leaves and soils collected from a wide range of sites with different degrees of metal pollution (industry, urban roadside, suburban) and from a rural (control) site by atomic absorption spectrometry. All the elements that measured were found to be at high levels in samples collected at industrial sites, except for lead and copper which were found at high levels in samples collected from urban roadsides that associated with the road traffic. The strong correlation between the degree of contamination and concentrations in all plant leaves assessed display that the leaves of R. pseudo-acacia reflect the environmental changes accurately, and that they seem as an effective biomonitor of environmental quality in areas subjected to industrial and traffic pollutions.  相似文献   

19.
The Aliaga metal industry district located 50 km northwest of Izmir City, in Turkey, includes many metal factories. The geology of the area is represented by Mesozoic flysch deposits and Cenozoic volcano sedimentary rocks. Tectonic elements are NE-SW and NW-SE trending faults and a W-NW trending fault direction that is important for water supply. Rock, soil, stream sediment, and water samples taken at various distances from the industrial area were analyzed for Fe, Ti, Mn, Cr, Pb, Cu, Ni, Zn, and Mo. According to the results, the elements in rocks are reasonable for the range of "Clarke" values, but in the soils and stream sediment, they comprise higher values than are acceptable for agricultural activities. Toxicity analyses were carried out in the drinking artesian water of Cakmakli village and wastewater samples of the factories and river water both of which are used for irrigation of the agricultural areas in and around the investigated area. The people should, however be made aware that this waste and river water is unacceptable for agriculture. Additionally, the contamination of seawater in Nemrut Bay is probably caused by contaminated river and underground water running to the sea. The chemical and toxicity analysis of drinking water samples show that they are above accepted standards and harmful. Previous air pollution studies (funnel gas emission analyses) also show that gas emission contains high amount of dust particles with high Fe, Zn, Pb, and Cu concentrations. As a result, all elements analyzed are of great importance relative to problems concerning contamination of the soil, stream sediment, ground surface water, and air by individual metals from uncontrolled processing of some metal factories.  相似文献   

20.
Twelve elements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Sn, Cd and Pb) in 24 sediment samples at eight sites (S1-S8) from the East China Sea were analyzed with the BCR sequential extraction (SE) protocol to obtain the metal distribution patterns in this region. The results showed that the heavy metal pollutions in S4 and S8 were more severe than in other sampling sites, especially Cd and Pb pollution. In the top sediments at S4 and S8, both the total contents and the most dangerous non-residual fractions of Cd and Pb were extremely high. More than 90% of the total concentrations of V, Cr, Mo and Sn existed in the residual fraction. Fe, Co, Ni, Cu and Zn mainly (more than 60%) occurred in the residual fraction. While Mn, Pb and Cd dominantly presented in the non-residual fractions in the top sediments. The metal distribution patterns with depth and the correlations between total organic carbon (TOC) and the total Fe-Mn content were also investigated. The results showed that, for most of the elements except Fe, the concentration of elements in fraction A in the top sediments was higher than that in other depth. The similar rule was also found in fraction B but not in fraction C. Besides, the distributions of V, Cd in fraction B and Pb, Cd, Cu in fraction C might be affected by TOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号