首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Abstract:  The "botanist effect" is thought to be the reason for higher plant species richness in areas where botanists are disproportionately present as an artefactual consequence of a more thorough sampling. We examined whether this was the case for U.S. counties. We collated the number of species of vascular plants, human population size, and the area of U.S. counties. Controlling for spatial autocorrelation and county area, plant species richness increased with human population size and density in counties with and without universities and/or botanical gardens, with no significant differences in the relation between the two subsets. This is consistent with previous findings and further evidence of a broad-scale positive correlation between species richness and human population presence, which has important consequences for the experience of nature by inhabitants of densely populated regions. Combined with the many reports of a negative correlation between the two variables at a local scale, the positive relation between plant species richness in U.S. counties and human population presence stresses the need for the conservation of seminatural areas in urbanized ecosystems and for the containment of urban and suburban sprawl.  相似文献   

2.
Fish Responses to Experimental Fragmentation of Seagrass Habitat   总被引:2,自引:0,他引:2  
Abstract: Understanding the consequences of habitat fragmentation has come mostly from comparisons of patchy and continuous habitats. Because fragmentation is a process, it is most accurately studied by actively fragmenting large patches into multiple smaller patches. We fragmented artificial seagrass habitats and evaluated the impacts of fragmentation on fish abundance and species richness over time (1 day, 1 week, 1 month). Fish assemblages were compared among 4 treatments: control (single, continuous 9‐m2 patches); fragmented (single, continuous 9‐m2 patches fragmented to 4 discrete 1‐m2 patches); prefragmented/patchy (4 discrete 1‐m2 patches with the same arrangement as fragmented); and disturbance control (fragmented then immediately restored to continuous 9‐m2 patches). Patchy seagrass had lower species richness than actively fragmented seagrass (up to 39% fewer species after 1 week), but species richness in fragmented treatments was similar to controls. Total fish abundance did not vary among treatments and therefore was unaffected by fragmentation, patchiness, or disturbance caused during fragmentation. Patterns in species richness and abundance were consistent 1 day, 1 week, and 1 month after fragmentation. The expected decrease in fish abundance from reduced total seagrass area in fragmented and patchy seagrass appeared to be offset by greater fish density per unit area of seagrass. If fish prefer to live at edges, then the effects of seagrass habitat loss on fish abundance may have been offset by the increase (25%) in seagrass perimeter in fragmented and patchy treatments. Possibly there is some threshold of seagrass patch connectivity below which fish abundances cannot be maintained. The immediate responses of fish to experimental habitat fragmentation provided insights beyond those possible from comparisons of continuous and historically patchy habitat.  相似文献   

3.
4.
5.
6.
Abstract:  Whenever population viability analysis (PVA) models are built to help guide decisions about the management of rare and threatened species, an important component of model building is the specification of a habitat model describing how a species is related to landscape or bioclimatic variables. Model-selection uncertainty may arise because there is often a great deal of ambiguity about which habitat model structure best approximates the true underlying biological processes. The standard approach to incorporate habitat models into PVA is to assume the best habitat model is correct, ignoring habitat-model uncertainty and alternative model structures that may lead to quantitatively different conclusions and management recommendations. Here we provide the first detailed examination of the influence of habitat-model uncertainty on the ranking of management scenarios from a PVA model. We evaluated and ranked 6 management scenarios for the endangered southern brown bandicoot ( Isoodon obesulus ) with PVA models, each derived from plausible competing habitat models developed with logistic regression. The ranking of management scenarios was sensitive to the choice of the habitat model used in PVA predictions. Our results demonstrate the need to incorporate methods into PVA that better account for model uncertainty and highlight the sensitivity of PVA to decisions made during model building. We recommend that researchers search for and consider a range of habitat models when undertaking model-based decision making and suggest that routine sensitivity analyses should be expanded to include an analysis of the impact of habitat-model uncertainty and assumptions.  相似文献   

7.
Abstract:  In the boreal forests of Fennoscandia, over 99% of forest area has been altered by forestry practices, which has created forest with age structures and stand characteristics that differ from primary forest stands. Although many researchers have investigated how forestry affects species abundance, few have assessed how forestry practices affect fitness correlates of species living in altered habitats, and this has negatively affected management efforts. We experimentally addressed the effect of standard forestry practices on fitness correlates of an open-nesting, long-lived bird species typical to boreal forests of Eurasia, the Siberian Jay ( Perisoreus infaustus ). We used a before-after comparison of reproductive data on the level of territories and found that standard forestry practices had a strong negative effect on the breeding success of jays. Both partial thinning of territories and partial clearcutting of territories reduced future breeding success by a factor of 0.35. Forestry practices reduced territory occupancy. Thus, over the 15 years of the study, productivity of the affected population declined over 50% as a result of territory abandonment and reduced breeding success. Results of previous studies on Siberian Jays suggest that the strong effect of forest thinning on fitness is explained by the fact that most common predators of nests and adults are visually oriented and thus thinning makes prey and nests more visible to predators. The consequences of thinning we observed are likely to apply to a wide range of species that rely on understory to provide visual protection from predators. Thus, our results are important for the development of effective conservation management protocols and for the refinement of thinning practices.  相似文献   

8.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

9.
Declines of species in fragmented landscapes can potentially be reversed either by restoring connectivity or restoring local habitat quality. Models fitted to snapshot occupancy data can be used to predict the effectiveness of these actions. However, such inferences can be misleading if the reliability of the habitat and landscape metrics used is unknown. The only way to unambiguously resolve the roles of habitat quality and metapopulation dynamics is to conduct experimental reintroductions to unoccupied patches so that habitat quality can be measured directly from data on vital rates. We, therefore, conducted a 15-year study that involved reintroducing a threatened New Zealand bird to unoccupied forest fragments to obtain reliable data on their habitat quality and reassess initial inferences made by modeling occupancy against habitat and landscape metrics. Although reproductive rates were similar among fragments, subtle differences in adult survival rates resulted in λ (finite rate of increase) estimations of <0.9 for 9 of the 12 fragments that were previously unoccupied. This was the case for only 1 of 14 naturally occupied fragments. This variation in λ largely explained the original occupancy pattern, reversing our original conclusion from occupancy modeling that this occupancy pattern was isolation driven and suggesting that it would be detrimental to increase connectivity without improving local habitat quality. These results illustrate that inferences from snapshot occupancy should be treated with caution and subjected to testing through experimental reintroductions in selected model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号