首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permeability is one of the most important parameters for CO2 injection in coal to enhance coalbed methane recovery. Laboratory characterization of coal permeability provides useful information for in situ permeability behavior of coal seams when adsorbing gases such as CO2 are injected. In this study, a series of experiments have been conducted for coal samples using both non-adsorbing and adsorbing gases at various confining stresses and pore pressures. Our observations have showed that even under controlled stress conditions, coal permeability decreases with respect to pore pressure during the injection of adsorbing gases. In order to find out the causes of permeability decrease for adsorbing gases, a non-adsorbing gas (helium) is used to determine the effective stress coefficient. In these experiments using helium, the impact of gas sorption can be neglected and any permeability reduction is considered as due to the variation in the effective stress, which is controlled by the effective stress coefficient. The results show that the effective stress coefficient is pore pressure dependent and less than unity for the coal samples studied. The permeability reduction from helium experiments is then used to calibrate the subsequent flow-through experiments using adsorbing gases, CH4 and CO2. Through this calibration, the sole effect of sorption-induced strain on permeability change is obtained for these adsorbing gas flow-through experiments. In this paper, experimental results and analyses are reported including how the impact of effective stress coefficient is separated from that of the sorption-induced strain on the evolution of coal permeability.  相似文献   

2.
Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries. This study for the first time establishes a method, which allows for the measurement of permeability, porosity, and pore size distribution of cores simultaneously. From the observation of the pore size distribution by low-field nuclear magnetic resonance (NMR) relaxation time spectrometry the mechanisms of pressure-dependent porosity and permeability change can be derived. This information cannot be obtained by traditional methods. As the large-size pores or fractures contribute significantly to the permeability, their change consequently leads to a large permeability change. The contribution of fractures to permeability is even larger than that of pores. Thus, the permeability of the cores with fractures decreased more than that of cores without fractures during formation pressure decrease. Furthermore, it did not recover during formation pressure increase. It can be concluded that in fractures, mainly plastic deformation takes place, while matrix pores mainly show elastic deformation. Therefore, it is very important to keep an appropriate formation fluid pressure during the exploitation of ground water and petroleum in a fractured formation.  相似文献   

3.
Coalbeds are an attractive geological environment for storage of carbon dioxide (CO2) because CO2 is retained in the coal as an adsorbed phase and the cost of injection can be offset by enhanced coalbed methane (ECBM) production. This paper presents the findings of a CO2 storage feasibility study on coalbeds in the Wyodak-Anderson coal zone of the Powder River Basin, Wyoming, USA, using reservoir characterization and fluid flow simulations. A 3D numerical model of the Big George coal was constructed using geostatistical techniques, with values of cleat and matrix permeability and porosity constrained through history-matching of production data from coalbed methane (CBM) wells in the field area.Following history-matching, several ECBM and CO2 storage scenarios were investigated: shrinkage and swelling of the coal was either allowed or disallowed, a horizontal hydraulic fracture was either placed at the injection well or removed from the model, the number of model layers was varied between 1 and 24, and the permeability and porosity fields were constructed to be either homogeneous or heterogeneous in accordance with geostatistical models of regional variability. All simulations assumed that the injected gas was 100% CO2 and that the coalbed was overlain by an impermeable caprock. Depending on the scenario, the simulations predicted that after 13 years of CO2 injection, the cumulative methane production would be enhanced by a factor of 1.5–5. Including coal matrix shrinkage and swelling in the model predicted swelling near the injection well, which resulted in a slight reduction (10%) in injection rate. However, including a horizontal hydraulic fracture in the model at the base of the injection well helped mitigate the negative effect of swelling on injection rate. It was also found that six model layers were needed to have sufficient resolution in the vertical direction to account for the buoyancy effects between the gas and resident water, and that capturing the heterogeneous nature of the coal permeability and porosity fields predicted lower estimates of the storage capacity of the Wyodak-Anderson coal zone.After noting that gravity and buoyancy were the major driving forces behind gas flow within the Big George coal, several leakage scenarios were also investigated, in an effort to better understand the interplay between diffusion and flow properties on the transport and storage of CO2. The modeling predicted that the upward migration of gas due to the buoyancy effect was faster than the diffusion of CO2 and therefore the gas rapidly rose to the top of the coalbed and migrated into overlying strata when an impermeable caprock was not included in the model.  相似文献   

4.
To study the effects of the tectonic stress environment on the tectonophysical features of deformed coal, No.8 Mine in the Pingdingshan mine area is used as a study area and the relationship between the development of deformed coal, distribution of fractures, formation of deformed coal and tectonic stress environment are analyzed. The results indicate that the thickness of the bedrock layer should be included in the analysis of the tectonic stress environment for a region of intense tectonic activity. Although the reverse faulting stress regime can control the development of deformed coal, the C seam is extremely sensitive to the stress regime. The most advantageous direction of the deformed coal fractures is consistent with the regional maximum principal stress, and the development of fractures is closely related to the evolution of the tectonic stress environment. The fracture density of the E seam presents a uniform distribution, yet that of the C seam is completely heterogeneous. Superposition and compounding of the tectonic communities evidently increase the fracture density of the deformed coal. There is a relatively apparent boundary between the different types of deformation, which gradually transform from brittle to ductile with a decreasing lateral pressure coefficient. A generalized deformation pattern of the deformed coal is proposed and can be divided into frictional sliding and solid flow.  相似文献   

5.
Coal mine methane (CMM) released during coal mining attributes to unsafe working conditions and environmental impact. China, the largest coal producer in the world, is facing problems associated with CMM such as fatal gas accidents and intense greenhouse gas emission along the path to deep mining. Complicated geological conditions featured with low permeability, high gas pressure and gas content of Chinese coal seams have been hindering the coal extraction. To solve these problems, a model of coal–methane co-exploitation is proposed. This model realizes the extraction of two resources with safety ensured and has been successfully applied in Huainan coalfield, China. The current situation of drainage and utilization of CMM in China are diagnosed. Connections between the coal production, methane emissions, drainage and utilization are analyzed. Estimations of future coal production, methane emissions, drainage and utilization are made in a co-exploitation based scenario. The emitted, drained and utilized CMM are projected to reach 26.6, 13.3 and 9.3 billion m3, respectively by adapting the assumption of 3800 million metric tons of coal production by 2020.  相似文献   

6.
This paper describes a mathematical model for the pyrolysis of a small dry pine wood cylinder. The computational domain is axisymmetric and involves the heating chamber, with the wood cylinder vertically situated in the centre of the chamber. The model simulates the laminar flow around the particle and the laminar flow inside the wood/char matrix by applying a two-phase transport model where the solid wood/char matrix acts as one phase and the various gases produced from the pyrolysis process is assembled in the other phase.

Convective, conductive and thermal radiation transfer modes are included in the model. A two-step pyrolysis reaction scheme is used for the modelling of the conversion from wood to tar and gas. Both the thermal conductivity and the permeability of the wood/char matrix are modelled anisotropically in order to capture the directional differences in heat and mass transport, existing in real wood.

Results from simulations are compared with measurements from literature for the centre core solid temperature and the conversion from wood to char, tar and pyrolysis gas in the particle during heating. The results show very good agreement with the measured temperature profile. The simulated conversion profile shows an overall good agreement with the measurements, however with discrepancies in the early stage of the process. Besides the successful validation with the experimental data, it provides us with all the details of the distribution of the migrating pyrolysis gas and tar, the temperature, the velocity flow field and pressure in the wood/char cylinder.  相似文献   

7.
: The danger to the environment associated with the injection of liquid industrial wastes into a deep, confined, subsurface rock formation may arise from the transport of the waste laterally or vertically in the formation. The pattern of lateral transport, which can take place as a result of convection as well as dispersion and diffusion, can be determined by an approximate analytical solution to the mass transport equation. Vertical transport may take place through both natural fractures and fractures created by hydrostatic stresses generated around the well during injection. To determine the stresses, we used the finite element method to get a numerical solution of the flow equation. We applied a solution of the flow equation to calculate the stress buildup and decay for the Jones & Laughlin Steel Corporation's injection well near Hennepin in Putnam County, Illinois. According to our computations, the stress buildup due to injection is about 0.16 pounds per square inch per foot - psi - (0.362 Newton per square centimeter per meter), which, added to normal pressure, makes an estimated total stress of 0.60 psi/ft (1.36 Newton/cm2/m). That pressure is insufficient to cause fracturing of the Cambrian Eau Claire aquitard, the confining bed for the disposal zone.  相似文献   

8.
Coalbed methane is an important resource of energy. Meanwhile CO2 sequestration in coal is a potential management option for greenhouse gas emissions. An attractive aspect to this process is that CO2 is adsorbed to the coal, reducing the risk of CO2 migration to the surface. Another aspect to this is that the injected CO2 could displace adsorbed methane leading to enhanced coalbed methane recovery. Therefore, in order to understand gas migration within the reservoir, mixed-gas adsorption models are required. Moreover, coal reservoir permeability will be significantly affected by adsorption-induced coal swelling during CO2 injection. Coal swelling is directly related to reservoir pressure and gas content which is calculated by adsorption models in reservoir simulation. Various models have been studied to describe the pure- and mixed-gas adsorption on coal. Nevertheless, only the Langmuir and Extended Langmuir models are usually applied in coal reservoir simulations. This paper presents simulation work using several approaches to representing gas adsorption, implemented into the coal seam gas reservoir simulator SIMED II. The adsorption models are the Extended Langmuir model (ELM), the Ideal Adsorbed Solution (IAS) model and the Two-Dimensional Equation of State (2D EOS). The simulations based on one Australian and one American coal sample demonstrated that (1) the Ideal Adsorbed Solution model, in conjunction with Langmuir model as single-component isotherm, shows similar simulation results as the ELM for both coals, with the IAS model representing the experimental adsorption data more accurately than the ELM for one coal and identically with the ELM for the other coal; (2) simulation results using the 2D EOS, however, are significantly different to the ELM or IAS model for both coal samples. The magnitude of the difference is also dependent on coal swelling and the well operating conditions, such as injection pressure.  相似文献   

9.
Laboratory studies and a number of field pilots have demonstrated that CO2 injection into coal seams has the potential to enhance coalbed methane (CBM) recovery with the added advantage that most of the injected CO2 can be stored permanently in coal. The concept of storing CO2 in geologic formations as a safe and effective greenhouse gas mitigation option requires public and regulatory acceptance. In this context it is important to develop a good understanding of the reservoir performance, uncertainties and the risks that are associated with geological storage. The paper presented refers to the sources of uncertainty involved in CO2 storage performance assessment in coalbed methane reservoirs and demonstrates their significance using extensive digital well log data representing the Manville coals in Alberta, Canada. The spatial variability of the reservoir properties was captured through geostatistical analysis, and sequential Gaussian simulations of these provided multiple realisations for the reservoir simulator inputs. A number of CO2 injection scenarios with variable matrix swelling coefficients were evaluated using a 2D reservoir model and spatially distributed realisations of total net thickness and permeability.  相似文献   

10.
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.  相似文献   

11.
The gas permeability of plastic films is important in packaging, containment, and agricultural fumigation. Recently, an approach for estimating the mass transfer coefficient of vapors across a film was presented by Papiernik et al. (2001). The mass transfer coefficient is an intrinsic property of a film-chemical combination, independent of the concentration gradient maintained across the film. Here we describe an apparatus useful for obtaining permeability data; the model of Papiernik et al. (2001) may be fitted to the data to determine mass transfer coefficients. The assembled equipment provides a sealed permeability cell, where a sample of the film to be tested is sandwiched between two static half-cells. Vapor is spiked to one side of the film and the concentrations in the spiked and receiving chamber are monitored until equilibrium. A sealed system is required for this approach; the permeability cells described here were gas-tight for >40 d. This approach produces reproducible measures of mass transfer coefficients that are not dependent on the size of the experimental apparatus. Model parameters were similar when fitted simultaneously as when determined independently from the same data set.  相似文献   

12.
CO2 injection into a depleted hydrocarbon field or aquifer may give rise to a variety of coupled physical and chemical processes. During CO2 injection, the increase in pore pressure can induce reservoir expansion. As a result the in situ stress field may change in and around the reservoir. The geomechanical behaviour induced by oil production followed by CO2 injections into an oil field reservoir in the Paris Basin has been numerically modelled. This paper deals with an evaluation of the induced deformations and in situ stress changes, and their potential effects on faults, using a 3D geomechanical model. The geomechanical analysis of the reservoir–caprock system was carried out as a feasibility study using pressure information in a “one way” coupling, where pressures issued from reservoir simulations were integrated as input for a geomechanical model. The results show that under specific assumptions the mechanical effects of CO2 injection do not affect the mechanical stability of the reservoir–caprock system. The ground vertical movement at the surface ranges from ?2 mm during oil production to +2.5 mm during CO2 injection. Furthermore, the changes in in situ stresses predicted under specific assumptions by geomechanical modelling are not significant enough to jeopardize the mechanical stability of the reservoir and caprock. The stress changes issued from the 3D geomechanical modelling are also combined with a Mohr–Coulomb analysis to determine the fault slip tendency. By integrating the stress changes issued from the geomechanical modelling into the fault stability analysis, the critical pore pressure for fault reactivation is higher than calculated for the fault stability analysis considering constant horizontal stresses.  相似文献   

13.
In this paper, a field study was carried out to examine the effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine in central-eastern Ohio. Flue gas desulfurizalion by-product was injected into the down-dip portions of the Robert-Dawson mine in an attempt to seal major seeps exiting the mine and to coat exposed pyritic surfaces. Immediately following grout injection, significant increases in acidity, iron, aluminum, sulfur, and calcium were observed at most surface and ground water locations near where grouting was carried out. Following this initial flush of elements, concentrations of most constituents have decreased to near pre-grouting levels. Data from the site and geochemical modeling suggest that an increase in water level or rerouting of drainage flow resulted in the dissolution of iron and aluminum sulfate salts and ferrihydrite. Dissolution of the FGD grout material resulted in increases in calcium and sulfate concentrations in the drainage waters. Water within the mine voids was saturated with respect to calcium sulfate and gypsum immediately following grout injection. Based on an analysis of core samples obtained from the site, acid mine drainage (AMD) was in contact with at least some portions of the grout and this resulted in grout weathering. Subsequent transport of calcium and sulfate to the underclay, perhaps by fracture flow, has resulted in the deposition of gypsum and calcium sulfate solids.  相似文献   

14.
15.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

16.
The storage potential of selected sites within the Bohai Basin was assessed for the COACH project. The Gangdong oilfield is considered to have a small potential storage capacity (23 Mt) and to be possibly suitable for an enhanced oil recovery or small-scale storage pilot rather than large-scale storage. The Shengli oilfield province is considered to have a great potential storage capacity (472 Mt in eight selected fields), however, these fields, like those of the Gangdong oilfield province, are compartmentalised by faulting and stratigraphy and likely to be quite challenging for injection. Unmineable coal seams in the Kailuan mining area were also considered for storage, the estimated capacity is 504 Gt adsorbed onto the coal and 38,100 Mt void storage capacity. However, the coals have low porosity and permeability, so they would be expected to have poor injectivity. This is also an active mining area and so any storage site would have to be chosen carefully to avoid affecting future energy resources. The Huimin sub-basin within the Jiyang Depression was identified for consideration as an aquifer storage site; the Guantao Formation has good porosity and permeability in this region, and the regional-level storage capacity of these areas was estimated to be 0.7 Gt. The aquifers in the Huimin sub-basin appear promising for storage, however, less data are available than for the oilfields and the sealing formations are not directly proven to trap buoyant fluids, though in adjacent oilfield in the Shengli oilfield province, the Minghuazhen Formation forms a regional seal for the Guantao Formation.  相似文献   

17.
The double porosity model for fissured rocks, such as limestones and dolomites, has some features that may be relevant for carbon sequestration. Numerical simulations were conducted to study the influence of matrix diffusion on the trapping mechanisms relevant for the long-term fate of CO2 injected in fissured rocks. The simulations show that, due to molecular diffusion of CO2 into the rock matrix, dissolution trapping and hydrodynamic trapping are more effective in double porosity aquifers than in an equivalent porous media. Mineral trapping, although assessed indirectly, is also probably more relevant in double porosity aquifers due to the larger contact surface and longer contact time between dissolved CO2 and rock minerals. However, stratigraphic/structural trapping is less efficient in double porosity media, because at short times CO2 is stored only in the fissures, requiring large aquifer volumes and increasing the risk associated to the occurrence of imperfections in the cap-rock through which leakage can occur. This increased risk is also a reality when considering storage in aquifers with a regional flow gradient, since the CO2 free-phase will move faster due to the higher flow velocities in fissured media and discharge zones may be reached sooner.  相似文献   

18.
Abstract

In this work, gas flow and heat transfer have been numerically investigated and analyzed for both cathode/anode ducts of proton exchange membrane (PEM) fuel cells. The simulation is conducted by solving a set of conservation equations for the whole domain consisting of a porous medium, solid structure, and flow duct. A generalized extended Darcy model is employed to investigate the flow inside the porous layer. This model accounts for the boundary-layer development, shear stress, and microscopic inertial force as well. Effects of inertial coefficient, together with permeability, effective thermal conductivity, and thickness of the porous layer on gas flow and heat transfer are investigated.  相似文献   

19.
Fuelwood consumption in Northern Nigeria exceeds the sustainable production, and the deficit is currently met through long-distance transport from the southern part of the country at an artificially low cost Current household fuel consumption patterns and factors affecting stove choice are discussed. Little has been done to promote more efficient woodstoves in the region, but prospects for stove programs are only good where fuelwood is marketed and the policy environment is conducive. At subsidized official prices for kerosene, liquefied petroleum gas (LPG), and electricity, wood is more expensive on a net usable heat basis, but the high capital cost of stoves for these fuels prevents many households from switching. Moreover, these fuels are often only available at much higher parallel market prices, which result in wood being the less expensive choice. There is little prospect for substitution of coal, solar cookers, or biogas digesters.  相似文献   

20.
A river system is a network of intertwining channels and tributaries, where interacting flow and sediment transport processes are complex and floods may frequently occur. In water resources management of a complex system of rivers, it is important that instream discharges and sediments being carried by streamflow are correctly predicted. In this study, a model for predicting flow and sediment transport in a river system is developed by incorporating flow and sediment mass conservation equations into an artificial neural network (ANN), using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. The ANN river system model is applied to modeling daily discharges and annual sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China. By the comparison of calculated and observed data, it is demonstrated that the ANN technique is a powerful tool for real-time prediction of flow and sediment transport in a complex network of rivers. A significant advantage of applying the ANN technique to model flow and sediment phenomena is the minimum data requirements for topographical and morphometric information without significant loss of model accuracy. The methodology and results presented show that it is possible to integrate fundamental physical principles into a data-driven modeling technique and to use a natural system for ANN construction. This approach may increase model performance and interpretability while at the same time making the model more understandable to the engineering community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号