共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeinab Amrollahi Ivar S. Ertesvåg Olav Bolland 《International Journal of Greenhouse Gas Control》2011,5(3):422-426
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%. 相似文献
2.
Heats of absorption of CO2 with different solvents were measured in this work in a commercially available reaction calorimeter CPA-122 (Chemisens AS, Sweden) as function of temperature, loading and solvent composition over the temperature range from 40 to 120 °C. Studied amines include primary amines (monoethanolamine and 2-amino-2-methyl-1-propanol), tertiary amines (N-methyldiethanolamine and N,N-diethylethanolamine), diamines (1-(2-aminoethyl)-aminoethanol and N-methyl-1,3-propanediamine), triamine (diethylenetriamine), and cyclic amine (piperazine). Combinations of these amines and also mixtures of potassium carbonate and piperazine were tested. Experimental heats of absorption of CO2 with these systems are compared. 相似文献
3.
The membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture. 相似文献
4.
Ulrich Liebenthal Sebastian Linnenberg Jochen Oexmann Alfons Kather 《International Journal of Greenhouse Gas Control》2011,5(5):1232-1239
When integrating a post-combustion CO2 capture process and CO2 compression into a steam power plant, the three interface quantities heat, electricity and cooling duty must be satisfied by the power plant, leading to a loss in net efficiency. The heat duty shows to be the largest contributor to the overall net efficiency penalty of the power plant. Additional energy penalty results from the cooling and electric power duty of the capture and compression units.In this work, the dependency of the energy penalty on the quantity and quality of the heat duty is analyzed and quantified for a state-of-the-art hard coal fired power plant. Furthermore, the energy penalty attributed to the additional cooling and power duty is quantified. As a result correlations are provided which enable to predict the impact of the heat, cooling and electricity duty of post-combustion CO2 capture processes on the net output of a steam power plant in a holistic approach. 相似文献
5.
J.C. Abanades M. Alonso N. Rodriguez 《International Journal of Greenhouse Gas Control》2011,5(3):512-520
A novel concept for capturing CO2 from biomass combustion using CaO as an active solid sorbent of CO2 is discussed and experimentally tested. According to the CaO/CaCO3 equilibrium, if a fuel could be burned at a sufficiently low temperature (below 700 °C) it would be possible to capture CO2 “in situ” with the CaO particles at atmospheric pressure. A subsequent step involving the regeneration of CaCO3 in a calciner operating at typical conditions of oxyfired-circulating fluidized combustion would deliver the CO2 ready for purification, compression and permanent geological storage. Several series of experiments to prove this concept have been conducted in a 30 kW interconnected fluidized bed test facility at INCAR-CSIC, made up of two interconnected circulating fluidized bed reactors, one acting as biomass combustor-carbonator and the other as air-fired calciner (which is considered to yield similar sorbent properties than those of an oxyfired calciner). CO2 capture efficiencies in dynamic tests in the combustor-carbonator reactor were measured over a wide range of operating conditions, including different superficial gas velocities, solids circulation rates, excess air above stoichiometric, and biomass type (olive pits, saw dust and pellets). Biomass combustion in air is effective at temperatures even below the 700 °C, necessary for the effective capture of CO2 by carbonation of CaO. Overall CO2 capture efficiencies in the combustor-carbonator higher than 70% can be achieved with sufficiently high solids circulation rates of CaO and solids inventories. The application of a simple reactor model for the combined combustion and CO2 capture reactions allows an efficiency factor to be obtained from the dynamic experimental test that could be valuable for scaling up purposes. 相似文献
6.
Kay Damen André Faaij Wim Turkenburg 《International Journal of Greenhouse Gas Control》2009,3(2):217-236
We sketch four possible pathways how carbon dioxide capture and storage (CCS) (r)evolution may occur in the Netherlands, after which the implications in terms of CO2 stored and avoided, costs and infrastructural requirements are quantified. CCS may play a significant role in decarbonising the Dutch energy and industrial sector, which currently emits nearly 100 Mt CO2/year. We found that 15 Mt CO2 could be avoided annually by 2020, provided some of the larger gas fields that become available the coming decade could be used for CO2 storage. Halfway this century, the mitigation potential of CCS in the power sector, industry and transport fuel production is estimated at maximally 80–110 Mt CO2/year, of which 60–80 Mt CO2/year may be avoided at costs between 15 and 40 €/t CO2, including transport and storage. Avoiding 30–60 Mt CO2/year by means of CCS is considered realistic given the storage potential represented by Dutch gas fields, although it requires planning to assure that domestic storage capacity could be used for CO2 storage. In an aggressive climate policy, avoiding another 50 Mt CO2/year may be possible provided that nearly all capture opportunities that occur are taken. Storing such large amounts of CO2 would only be possible if the Groningen gas field or large reservoirs in the British or Norwegian part of the North Sea will become available. 相似文献
7.
《International Journal of Greenhouse Gas Control》2007,1(1):37-46
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation. 相似文献
8.
《International Journal of Greenhouse Gas Control》2007,1(2):135-142
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture. 相似文献
9.
Simon Shackley David Reiner Paul Upham Heleen de Coninck Gudmundur Sigurthorsson Jason Anderson 《International Journal of Greenhouse Gas Control》2009,3(3):344-356
In Part 1, we presented the findings of the EU ACCSEPT project (2006–2007) with regards to scientific, technical, legal and economic issues. In Part 2, we present the analysis of social acceptability on the part of both the lay public and stakeholders. We examine the acceptability of CO2 capture and geological storage (CCS) within the Clean Development Mechanism (CDM) of the Kyoto Protocol. The debate over the inclusion of CCS within the CDM is caught-up in a set of complex debates that are partly technical and partly political and, therefore, difficult, and time-consuming, to resolve. We explore concerns that support for CCS will detract from support for other low-carbon energy sources. We can find no evidence that support for CCS is currently detracting from support for renewable energy sources, though it is probably too early to detect such an effect. Efforts at understanding, engaging with, and communicating to, the lay public and wider stakeholder community (not just business) in Europe are currently weak and inadequate, despite well-meaning statements from governments and industry. 相似文献
10.
Heleen de Coninck Todd Flach Paul Curnow Peter Richardson Jason Anderson Simon Shackley Gudmundur Sigurthorsson David Reiner 《International Journal of Greenhouse Gas Control》2009,3(3):333-343
The ACCSEPT project, which ran from January 2006 to December 2007, identified and analysed the main factors which have been influencing the emergence of CO2 capture and geological storage (CCS) within the European Union (EU). The key clusters of factors concern science and technology, law and regulation, economics, and social acceptance. These factors have been analysed through interviews, a large-scale questionnaire conducted in 2006, and discussions in two stakeholder workshops (2006 and 2007). In Part I of this paper, we aim to distil the key messages and findings with regards to scientific, technical, legal and economic issues. There are no compelling scientific, technical, legal, or economic reasons why CCS could not be widely deployed in the forthcoming decades as part of a package of climate change mitigation options. In order to facilitate this deployment, governments at both the EU and Member State levels have an important role to play, in particular in establishing a robust and transparent legal framework (e.g. governing long-term environmental liability) and a strong policy framework providing sufficient and long-term incentives for CCS and CO2 transportation networks. 相似文献
11.
M. Olivares-Marín S. García C. Pevida M.S. Wong M. Maroto-Valer 《Journal of environmental management》2011
Adsorption is one of the most promising technologies for reducing CO2 emissions and at present several different types of sorbents are being investigated. The use of sorbents obtained from low-cost and abundant precursors (i.e. solid wastes) appears an attractive strategy to adopt because it will contribute to a reduction not only in operational costs but also in the amount of waste that is dumped and burned in landfills every year. Following on from previous studies by the authors, in this work several carbon-based adsorbents were developed from different carpet wastes (pre-consumer and post-consumer wastes) by chemical activation with KOH at various activation temperatures (600–900 °C) and KOH:char impregnation ratios (0.5:1 to 4:1). The prepared materials were characterised by chemical analysis and gas adsorption (N2, −196 °C; CO2, 0 °C), and tested for CO2 adsorption at temperatures of 25 and 100 °C. It was found that both the type of precursor and the conditions of activation (i.e. impregnation ratios, and activation temperatures), had a huge influence on the microporosity of the resultant samples and their CO2 capture capacities. The carbon-based adsorbent that presented the maximum CO2 capture capacities at 25 and 100 °C (13.8 wt.% and 3.1 wt.%, respectively), was prepared from a pre-consumer carpet waste and was activated at 700 °C using a KOH:char impregnation ratio of 1:1. This sample showed the highest narrow microporosity volume (0.47 cm3 g−1), thus confirming that only pores of less than 1 nm are effective for CO2 adsorption at atmospheric pressure. 相似文献
12.
Mohamed Ismael Riadh Sahnoun Ai Suzuki Michihisa Koyama Hideyuki Tsuboi Nozomu Hatakeyama Akira Endou Hiromitsu Takaba Momoji Kubo Shinkichi Shimizu Carlos A. Del Carpio Akira Miyamoto 《International Journal of Greenhouse Gas Control》2009,3(5):612-616
DFT calculations in gas and aqueous solution phases have been performed to study the mechanism of carbamate formation by the absorption of CO2 in 2-amino-2-methyl-1-propanol (AMP). The results reveal the importance of considering the effect of water as solvent for the reaction to proceed. Furthermore water molecules play an important role as a basic reactant leading to stable intermediates formation. These results point at a single-step, third order reaction as the most probable mechanism for the formation of carbamate by the absorption process. 相似文献
13.
In line with the global target of reducing climate change and its impact, this study explored the causal relationship between CO2 emissions, modernized agriculture, trade openness, aggregate and disaggregate energy consumption in 14 African countries from 1990–2013 using a panel quantile estimation procedure. The empirical results showed that value addition to agricultural commodities declines CO2 emissions in countries with high pollution levels. The study revealed a positive nexus between CO2 emissions and energy consumption homogeneously distributed across quantiles. Trade openness was found to lower CO2 emissions in countries with lower and higher levels of environmental pollution. While fossil fuel energy consumption was found to exacerbate CO2 emissions, renewable energy consumption confirmed its mitigating effect on environmental pollution. The institution of climate‐smart agricultural options will sustainably increase productivity and income while adapting to climate change by reducing greenhouse gas emissions. Diversification of energy technologies with clean and modern energy sources like renewables avoid the over‐dependence on fossil fuels for agricultural purposes. Trade policies can stimulate flows of technology and investment opportunities for specialization in production and economies of scale. Hence, the consideration of policies that boost agricultural sector productivity and create an efficient market for international trade in Africa will help in improving livelihoods. 相似文献
14.
Luis M. Romeo Sergio Usón Antonio Valero Jesús M. Escosa 《International Journal of Greenhouse Gas Control》2010,4(4):647-654
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW. 相似文献
15.
Machteld van den Broek Andrea Ramírez Heleen Groenenberg Filip Neele Peter Viebahn Wim Turkenburg André Faaij 《International Journal of Greenhouse Gas Control》2010,4(2):351-366
This study provides insight into the feasibility of a CO2 trunkline from the Netherlands to the Utsira formation in the Norwegian part of the North Sea, which is a large geological storage reservoir for CO2. The feasibility is investigated in competition with CO2 storage in onshore and near-offshore sinks in the Netherlands. Least-cost modelling with a MARKAL model in combination with ArcGIS was used to assess the cost-effectiveness of the trunkline as part of a Dutch greenhouse gas emission reduction strategy for the Dutch electricity sector and CO2 intensive industry. The results show that under the condition that a CO2 permit price increases from €25 per tCO2 in 2010 to €60 per tCO2 in 2030, and remains at this level up to 2050, CO2 emissions in the Netherlands could reduce with 67% in 2050 compared to 1990, and investment in the Utsira trunkline may be cost-effective from 2020–2030 provided that Belgian and German CO2 is transported and stored via the Netherlands as well. In this case, by 2050 more than 2.1 GtCO2 would have been transported from the Netherlands to the Utsira formation. However, if the Utsira trunkline is not used for transportation of CO2 from Belgium and Germany, it may become cost-effective 10 years later, and less than 1.3 GtCO2 from the Netherlands would have been stored in the Utsira formation by 2050. On the short term, CO2 storage in Dutch fields appears more cost-effective than in the Utsira formation, but as yet there are major uncertainties related to the timing and effective exploitation of the Dutch offshore storage opportunities. 相似文献
16.
17.
Numerical modelling of multiphase flow is an essential tool to ensure the viability of long-term and safe CO2 storage in geological formations. Uncertainties arising from the heterogeneity of the formation and lack of knowledge of formation properties need to be assessed in order to create a model that can reproduce the data available from monitoring. In this study, we investigated the impact of unknown spatial variability in the petrophysical properties within a sandy channel facies of a fluviatile storage formation using stochastic methods in a Monte Carlo approach. The stochastic method has been applied to the Ketzin test site (CO2SINK), and demonstrates that the deterministic homogeneous model satisfactorily predicts the first CO2 arrival time at the Ketzin site. The equivalent permeability was adjusted to the injection pressure and is in good agreement with the hydraulic test. It has been shown that with increasing small-scale heterogeneity, the sharpness of the CO2 front decreases and a greater volume of the reservoir is affected, which is also seen in an increased amount of dissolved CO2. Increased anisotropy creates fingering effects, which result in higher probabilities for earlier arrival times. Generally, injectivity decreases with increasing heterogeneity. 相似文献
18.
Maurizio Arcari 《Natural resources forum》1997,21(3):169-179
In 1994, after more than twenty years of work, the International Law Commission of the United Nations adopted a set of thirty-three draft articles on the Law of the Non-Navigational Uses of International Watercourses. In the same year, the draft articles were submitted to the General Assembly with a view to the adoption of an international convention. The present paper analyzes and comments upon some of the major issues dealt with in the draft articles, devoting special attention to the substantive legal principles governing the utilization of international rivers and the protection of related ecosystems. Various questions still remain open for consideration by the Working Group convened by the General Assembly in 1996–1997 for the elaboration of a definitive convention. In spite of this, the draft articles adopted by the International Law Commission stand as an important achievement in the effort at codification of the law of international water resources. The present article was written within the framework of the research project "Technical aspects of the international law of the sea" which is being carried out at the Faculty of Law, University of Milan, Italy. 相似文献
19.
基于"十一五"和"十二五"期间(2006—2015)我国31个省份的面板数据,以二氧化硫排放量为研究对象,发现以环境约束性指标为抓手的环保绩效考核有效减少了地方的二氧化硫排放量,且"十二五"期间的政策驱动力比"十一五"期间更强。随着环保绩效考核的持续推进,年轻的省委书记越来越关注污染减排,但与年长的省委书记相比,环境绩效依然较差。总体来说,官员异质性对环境政策执行效果的影响正在逐渐减弱,制度化机制对地方环境治理的驱动效果正在增强。在"十四五"期间,进一步优化中央环保绩效考核制度将成为"打赢蓝天保卫战"的关键所在。 相似文献