首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

2.
This work provides the essential information and approaches for integration of carbon dioxide (CO2) capture units into power plants, particularly the supercritical type, so that energy utilization and CO2 emissions can be well managed in the subject power plants. An in-house model, developed at the University of Regina, Canada, was successfully used for simulating a 500 MW supercritical coal-fired power plant with a post-combustion CO2 capture unit. The simulations enabled sensitivity and parametric study of the net efficiency of the power plant, the coal consumption rate, and the amounts of CO2 captured and avoided. The parameters of interest include CO2 capture efficiency, type of coal, flue gas delivery scheme, type of amine used in the capture unit, and steam pressure supplied to the capture unit for solvent regeneration. The results show that the advancement of MEA-based CO2 capture units through uses of blended monoethanolamine–methyldiethanolamine (MEA–MDEA) and split flow configuration can potentially make the integration of power plant and CO2 capture unit less energy intensive. Despite the increase in energy penalty, it may be worth capturing CO2 at a higher efficiency to achieve greater CO2 emissions avoided. The flue gas delivery scheme and the steam pressure drawn from the power plant to the CO2 capture unit should be considered for process integration.  相似文献   

3.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

4.
In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO2 capture is presented. This process makes use of the CaO capability for CO2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO3 is calcined, the carbonator where the CO2 produced in the combustor is captured, the supercritical steam cycle and the CO2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO2 compression system.  相似文献   

5.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

6.
This study investigates the possibility of capturing CO2 from flue gas under pressurised conditions, which could prove to be beneficial in comparison to working under atmospheric conditions. Simulations of two hybrid combined cycles with pressurised fluidised bed combustion and CO2 capture are presented. CO2 is captured from pressurised flue gas by means of chemical absorption after the boiler but before expansion. The results show a CO2 capture penalty of approximately 8 percentage points (including 90% CO2 capture rate and compression to 110 bar), which makes the efficiency for the best performing cycle 43.9%. It is 5.2 percentage points higher than the most probable alternative, i.e. using a natural gas fired combined cycle and a pulverised coal fired condensing plant separately with the same fuel split ratio. The largest part of the penalty is associated with the lower mass flow of flue gas after CO2 capture, which leads to a decrease in work output in the expander and potential for feed water heating. The penalty caused by the regeneration of absorbent is quite low, since the high pressure permits the use of potassium carbonate, which requires less regeneration heat than for example the more commonly proposed monoethanolamine. Although the efficiencies of the cycles look promising it will be important to perform a cost estimate to be able to make a fair comparison with other systems. Such a cost estimate has not been done in this study. A significant drawback of these hybrid cycles in that respect is the complex nature of the systems that will have a negative effect on the economy.  相似文献   

7.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

8.
This paper presents application of the chemical looping combustion (CLC) method in natural gas-fired combined cycles for power generation with CO2 capture. A CLC combined cycle consisting of single CLC-reactor system, an air turbine, a CO2-turbine and a steam cycle has been designated as the base-case cycle. The base-case cycle can achieve net plant efficiency of about 52% at an oxidation temperature of 1200 °C. In order to achieve a reasonable efficiency at lower oxidation temperatures, reheat is introduced into the air turbine by employing multi CLC-reactors. The results show that the single reheat CLC-combined cycle can achieve net plant efficiency of above 51% at oxidation temperature of 1000 °C and above 53% at the oxidation temperature of 1200 °C including CO2 compression to 110 bar. The double reheat cycle results in marginal efficiency improvement as compared to the single reheat cycle. The CLC-cycles are also compared with a conventional combined cycle with and without post-combustion capture in amine solution. All the CLC-cycles show higher net plant efficiencies with close to 100% CO2 capture as compared to a conventional combined cycle with post-combustion capture, which is very promising.  相似文献   

9.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

10.
Significant differences exist in the flue gas composition in hot recycle Oxyfuel conditions as e.g. the high CO2 partial pressure (>90 vol%, dry), the very high SO2 concentration and the high water content (approx. 30 vol%). Therefore certain design and operation criteria have to be observed for the flue gas desulphurization with forced oxidation under Oxyfuel combustion conditions. Several performance tests have been executed at the 30 MWth Oxyfuel pilot plant in Schwarze Pumpe to evaluate the main performance parameters and to assess the influence of the major operation parameters. The results show that there are no fundamental problems for the operation of the flue gas desulphurization unit under Oxyfuel combustion conditions. High removal rates could be reached and no negative impact of the high CO2 partial pressure was observed under the tested operating conditions. No major differences in the gypsum quality have been observed between air firing and Oxyfuel conditions.  相似文献   

11.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

12.
Calcium oxide (CaO) is a material that is being widely investigated in the context of CO2 capture. One such application is as a CO2 sorbent in the sorption-enhanced steam methane reforming processes (SERP). CO2 is captured in an adsorption mode, where the conversion of CH4 to H2 is also enhanced, and released later in a separate desorption mode. This work presents an analysis of the relation between different process conditions and parameters during both adsorption and desorption modes. The interrelation between these conditions and the sorbent properties as well as the targeted carbon capture ratio is analysed. Conditions relevant for capturing 85% of carbon in the feed on CaO are determined and interlinked. A steam-to-carbon ratio of 4.2 has been determined to be relevant under 600 °C and 17 bar adsorption conditions. Similarly, process conditions relevant for regenerating the sorbent are determined and interlinked. For purge steam-to-CO2 ratio of 1.8 at a desorption pressure of 1 bar, relevant desorption temperature has been calculated to be 820 °C. System simulations under these adsorption and desorption conditions resulted in a system efficiency of 50.8%. Effect of tuning process operating conditions on system efficiency as well as the efficiency penalty associated with the regeneration of the sorbent are investigated by process simulations using Aspen Plus®. Possible system heat integration routes to reduce the efficiency penalty are proposed and the results of the process simulations are presented.  相似文献   

13.
Calcium looping (CaL) is a promising post-combustion CO2 capture technology which is carried out in a dual fluidized bed (DFB) system with continuous looping of CaO, the CO2 carrier, between two beds. The system consists of a carbonator, where flue gas CO2 is adsorbed by CaO and a regenerator, where captured CO2 is released. The CO2-rich regenerator flue gas can be sequestered after gas processing and compression. A parametric study was conducted on the 10 kWth DFB facility at the University of Stuttgart, which consists of a bubbling fluidized bed carbonator and a riser regenerator. The effect of the following parameters on CO2 capture efficiency was investigated: carbonator space time, carbonator temperature and calcium looping ratio. The active space time in the carbonator, which is a function of the space time and the calcium looping ratio, was found to strongly correlate with the CO2 capture efficiency. BET and BJH techniques provided surface area and pore volume distribution data, respectively, for collected sorbent samples. The rate of sorbent attrition was found to be 2 wt.%/h which is below the expected sorbent make-up rate required to maintain sufficient sorbent activity. Steady-state CO2 capture efficiencies greater than 90% were achieved for different combinations of operational parameters. Moreover, the experimental results obtained were briefly compared with results derived from reactor modeling studies. Finally, the implications of the experimental results with respect to commercialization of the CaL process have been assessed.  相似文献   

14.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

15.
In this paper Molten Carbonate Fuel Cells (MCFCs) are considered for their potential application in carbon dioxide separation when integrated into natural gas fired combined cycles. The MCFC performs on the anode side an electrochemical oxidation of natural gas by means of CO32? ions which, as far as carbon capture is concerned, results in a twofold advantage: the cell removes CO2 fed at the cathode to promote carbonate ion transport across the electrolyte and any dilution of the oxidized products is avoided.The MCFC can be “retrofitted” into a combined cycle, giving the opportunity to remove most of the CO2 contained in the gas turbine exhaust gases before they enter the heat recovery steam generator (HRSG), and allowing to exploit the heat recovery steam cycle in an efficient “hybrid” fuel cell + steam turbine configuration. The carbon dioxide can be easily recovered from the cell anode exhaust after combustion with pure oxygen (supplied by an air separation unit) of the residual fuel, cooling of the combustion products in the HRSG and water separation. The resulting power cycle has the potential to keep the overall cycle electrical efficiency approximately unchanged with respect to the original combined cycle, while separating 80% of the CO2 otherwise vented and limiting the size of the fuel cell, which contributes to about 17% of the total power output so that most of the power capacity relies on conventional low cost turbo-machinery. The calculated specific energy for CO2 avoided is about 4 times lower than average values for conventional post-combustion capture technology. A sensitivity analysis shows that positive results hold also changing significantly a number of MCFC and plant design parameters.  相似文献   

16.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

17.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of light hydrocarbons. This paper presents the combustion results obtained with a Cu-based oxygen carrier using mixtures of CH4 and light hydrocarbons (LHC) (C2H6 and C3H8) as fuel. The effect on combustion efficiency of the fuel reactor temperature, solid circulation flow rate and gas composition was studied in a continuous CLC plant (500 Wth). Full combustions were reached at 1073 and 1153 K working at oxygen to fuel ratios, ? higher than 1.5 and 1.2 respectively. Unburnt hydrocarbons were never detected at any experimental conditions at the fuel reactor outlet. Carbon formation can be avoided working at 1153 K or at ? values higher than 1.5 at 1073 K. After 30 h of continuous operation, the oxygen carrier exhibited an adequate behavior regarding attrition and agglomeration. It can be concluded that no special measures should be taken in a CLC process with Cu-based OC with respect to the presence of LHC in the fuel gas.  相似文献   

18.
As one of the three major carbon capture technologies associated with carbon capture and storage (CCS), oxy-fuel technology is currently undergoing rapid development with a number of international demonstration projects of scale 10–30 MWe having commenced and units with a scale of 250–300 MWe emerging in the progression towards commercialisation. Industrial scale testing of coal combustion and burners is also being conducted by technology vendors.The paper details the current international status of the technology; the contributions of current demonstrations; and a roadmap for commercial deployment.At its current state of maturity oxy-fuel technology may be considered semi-commercial, in that even if a unit was economically viable and could be provided by a vendor, the generator and vendor would need to share the technical risk. This is because guarantees could not at present be provided for operating characteristics associated with mature technologies such as reliability, emissions, ramp rate and spray control. This is due to the maturity of the technology associated with the capability of vendors and associated design and operational uncertainties, associated with a lack of plant experience at scale.The projected development of oxy-fuel technology for first-generation plant is provided, using an ASU for oxygen supply, standard furnace designs with externally recirculated flue gas, and limited thermal integration of the ASU and compression plant with the power plant. Potential features of second generation technology are listed.Listed issues delaying deployment indicate that market, economic, legal and issues of public acceptance are more significant than technical barriers.  相似文献   

19.
Gas conditioning is commonly referred to as the required processing for a produced natural gas to achieve transport and sales specifications. In this paper, gas conditioning as the processing required in the interface between CO2 capture and transport is studied for nine different natural gas fired power plant concepts and three different CO2 transport processes. Conditioning processes for both pipeline and ship transport are described and an enhanced process for volatile removal is developed. The energy requirement for the conditioning processes is normally between 90 and 120 kWh/tonne CO2; however, this depends on the pressure and composition of the captured CO2-rich stream. The loss of CO2 in the water purge is small for most capture processes. The waste streams from the gas conditioning processes can contain large amounts of CO2 and should therefore be further processed or reintroduced at an appropriate point upstream in the capture or gas conditioning process if possible. The integration benefit may vary depending on the composition of the CO2-rich stream. It could be particularly interesting for processes with “innovative reactors” (membranes, sorbents, chemical looping) to integrate CO2 capture and gas conditioning.  相似文献   

20.
The objective of this study is to investigate the potential process for the removal of carbon dioxide (CO2) from flue gas using fundamental membrane contactor, which is a membrane gas absorption (MGA) system. The experiments consisted of microporous polyvinylidenefluoride (PVDF) flat sheet membrane with 0.1 μm (as module I) and 0.45 μm (as module II) pore size. 2-Amino-2-methyl-1-propanol (AMP) solution was employed as the liquid absorbent. The effect of AMP concentration was studied with variation in the range 1–5 M. In addition, the experiments were carried out with 10%, 20%, 30% and 40% gas ratio of CO2 to N2 and pure CO2 as well. Through contact angle measurement, membranes for module I and module II were obtained with CA values of around 130.25° and 127.77°, respectively. The mass transfer coefficients for module II are lower than those of module I for 1–5 M of AMP. Furthermore, the increase in CO2 concentration in the feed gas stream enhanced the CO2 flux as the driving force of the system was increased in sequence from 1 M to 5 M of AMP. However, after the particular percentage (40%) of CO2 inlet concentration, the CO2 fluxes seem saturated. The combination of AMP as liquid absorbent and PVDF microporous membrane in MGA system has shown the potential to remove the CO2 from flue gas. In addition, the higher AMP concentration gave higher mass transfer coefficient at low liquid flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号