首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Concentrated, aqueous piperazine (PZ) has been investigated as a novel amine solvent for carbon dioxide (CO2) absorption. The CO2 absorption rate of aqueous PZ is more than double that of 7 m MEA and the amine volatility at 40 °C ranges from 11 to 21 ppm. Thermal degradation is negligible in concentrated, aqueous PZ up to a temperature of 150 °C, a significant advantage over MEA systems. Oxidation of concentrated, aqueous PZ is appreciable in the presence of copper (4 mM), but negligible in the presence of chromium (0.6 mM), nickel (0.25 mM), iron (0.25 mM), and vanadium (0.1 mM). Initial system modeling suggests that 8 m PZ will use 10–20% less energy than 7 m MEA. The fast mass transfer and low degradation rates suggest that concentrated, aqueous PZ has the potential to be a preferred solvent for CO2 capture.  相似文献   

2.
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine.  相似文献   

3.
The kinetics of the reaction between carbon dioxide (CO2) and mixed solutions of methyldiethanolamine (MDEA) and piperazine (PZ) was investigated experimentally in a laminar jet apparatus. The experimental kinetic data were obtained under no interfacial turbulence and over a temperature range from 313 to 333 K, MDEA/PZ wt% concentration ratios of 27/3, 24/6 and 21/9, and CO2 loadings from 0.0095 to 0.33 mol CO2/mol amine. In addition, a new absorption-rate/kinetics model for the kinetics of the mixed of solvents was developed, which takes into account the coupling between chemical equilibrium, mass transfer, and all possible chemical reactions involved in the CO2 reaction with MDEA/PZ solvent. The partial differential equations of this model were solved by the finite element numerical method (FEM) based on COMSOL software. The obtained experimental kinetics data were used to obtain the kinetic parameters of CO2 absorption into MDEA/PZ solutions. The reaction-rate constant obtained for PZ blended with MDEA was kPZ = 2.572 × 1012 exp(?5211/T). The 2D model for the blended amines MDEA/PZ has revealed the concentration profiles of all the species in both the radial and axial directions of the laminar jet which has enabled a better understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed MDEA/PZ solution occur. It also revealed that PZ may be depleted by the time the solvent blend of MDEA/PZ with a loading greater than 0.015 mol/mol amine is exposed to CO2 from the top of the laminar jet absorber.  相似文献   

4.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

5.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

6.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

7.
MEA solutions were subjected to oxidative degradation at both low and high gas rates. Solutions were degraded with 100 mL/min of 98%O2/2%CO2 with mass transfer achieved by vortexing. Solutions were analyzed for degradation products by IC and HPLC. In a parallel apparatus 7.5 L/min of 15%O2/2%CO2 was sparged through solution, with additional mass transfer achieved by vortexing. A Fourier Transform Infrared (FTIR) analyzer collected continuous gas-phase data on volatile products.Hydroxyethyl-formamide (HEF) and hydroxyethylimidazole (HEI) are the major liquid-phase oxidation products. In the presence of Fe2+ and Cu2+, HEF, HEI, and MEA losses increase by a factor of 3 compared to Fe2+ alone. Cr3+ and Ni2+, two metals present in stainless steel alloys, resulted in MEA losses that are 55% greater. In terms of oxidative degradation potential (greatest to lowest): Cu2+ > Cr3+/Ni2+ > Fe2+ > V5+.Inhibitor A reduces the formation of known products by 90% when catalyzed by Fe2+ and Cu2+ and by 99% with Cr3+/Ni2+. Inhibitor B reduces product rates by 97% and MEA losses by 75%, while a 100:1 ratio of EDTA to Fe2+ completely inhibits oxidation.  相似文献   

8.
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions.  相似文献   

9.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

10.
Use of amines is one of the leading technologies for post-combustion carbon dioxide capture from gas and coal-fired power plants. This study assesses the potential environmental impact of emissions to air that result from use of monoethanol amine (MEA) as an absorption solvent for the capture of carbon dioxide (CO2). Depending on operation conditions and installed reduction technology, emissions of MEA to the air due to solvent volatility losses are expected to be in the range of 0.01–0.8 kg/tonne CO2 captured. Literature data for human and environmental toxicity, together with atmospheric dispersion model calculations, were used to derive maximum tolerable emissions of amines from CO2 capture. To reflect operating conditions with typical and with elevated emissions, we defined a scenario MEA-LOW, with emissions of 40 t/year MEA and 5 t/year diethyl amine (DEYA), and a scenario MEA-HIGH, with emissions of 80 t/year MEA and 15 t/year DEYA. Maximum MEA deposition fluxes would exceed toxicity limits for aquatic organisms by about a factor of 3–7 depending on the scenario. Due to the formation of nitrosamines and nitramines, the estimated emissions of DEYA are close to or exceed safety limits for drinking water and aquatic ecosystems. The “worst case” scenario approach to determine maximum tolerable emissions of MEA and other amines is in particular useful when both expected environmental loads and the toxic effects are associated with high uncertainties.  相似文献   

11.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

12.
The carbon dioxide capture potential of amine amino acid salts (AAAS), formed by mixing equinormal amounts of amino acids; e.g. glycine, β-alanine and sarcosine, with an organic base; 3-(methylamino)propylamine (MAPA), was assessed by comparison with monoethanolamine (MEA), and with amino acid salt (AAS) from amino acid neutralized with an inorganic base; potassium hydroxide (KOH). Carbon dioxide absorption and desorption experiments were carried out on the solvent systems at 40 °C and 80 °C respectively. Experimental results showed that amine amino acid salts have similar CO2 absorption properties to MEA of the same concentration. They also showed good signs of stability during the experiments. Amino acid salt from an inorganic base, KOH, showed lower performance in CO2 absorption than the amine amino acid salts (AAAS) mainly due to a lower equilibrium temperature sensitivity. AAAS showed better performance than MEA of same concentration. AAAS from neutralization of sarcosine with MAPA showed the best performance and the performance could be further enhanced when promoted with excess MAPA. The solvent comparison is semi-quantitative since the bubble structure, and thus gas–liquid interfacial area may not be the same for all experiments, however superficial gas velocities were kept constant.  相似文献   

13.
The carbon dioxide capture and release from aqueous 2,2′-iminodiethanol (DEA) and N-methyl-2,2′-iminodiethanol (MDEA) have been investigated by means of 13C NMR spectroscopy. We have designed two experimental procedures using a gas mixture containing 12% (v/v) CO2 in N2 or air and 0.667 M aqueous solutions of DEA and MDEA. To understand the CO2–amine reaction equilibria, separate experiments of CO2 absorption (at 293, 313 and 333 K) and desorption (at boiling temperature, room pressure) were carried out. The 13C NMR analysis has allowed us to establish: (1) the percentage of CO2 stored in solution as HCO3?, CO32? and DEA carbamate; (2) the formation of DEA carbamate as a function of absorption temperature and time; (3) the slower decomposition of DEA carbamate than that of bicarbonate. In the experiments planned to test the reuse of the regenerated amines, the absorbent solution was continuously circulated in a closed cycle while it was absorbing CO2 in the absorber (set at 293 K) and simultaneously regenerating amine in the desorber (set at 388 K). After the equilibrium has been reached (13 h), the CO2 absorption efficiency is comprised between 84.0% (DEA) and 82.6% (MDEA) and the average amine regeneration efficiency ranges between 69.6% (DEA) and 78.2% (MDEA). Additionally, MDEA is more stable towards thermal degradation than DEA.  相似文献   

14.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

15.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

16.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

17.
This paper presents application of the chemical looping combustion (CLC) method in natural gas-fired combined cycles for power generation with CO2 capture. A CLC combined cycle consisting of single CLC-reactor system, an air turbine, a CO2-turbine and a steam cycle has been designated as the base-case cycle. The base-case cycle can achieve net plant efficiency of about 52% at an oxidation temperature of 1200 °C. In order to achieve a reasonable efficiency at lower oxidation temperatures, reheat is introduced into the air turbine by employing multi CLC-reactors. The results show that the single reheat CLC-combined cycle can achieve net plant efficiency of above 51% at oxidation temperature of 1000 °C and above 53% at the oxidation temperature of 1200 °C including CO2 compression to 110 bar. The double reheat cycle results in marginal efficiency improvement as compared to the single reheat cycle. The CLC-cycles are also compared with a conventional combined cycle with and without post-combustion capture in amine solution. All the CLC-cycles show higher net plant efficiencies with close to 100% CO2 capture as compared to a conventional combined cycle with post-combustion capture, which is very promising.  相似文献   

18.
A new contact oxidation filtration separation integrated bioreactor (CFBR) was used to treat municipal wastewater. The CFBR was made up of a biofilm reactor (the upper part of the CFBR) and a gravitational filtration bed (the lower part of the CFBR). Polyacrylonitrile balls (50 mm diameter, 237 m2/m3 specific surface, 90% porosity, and 50.2% packing rate) were filled into the biofilm reactor as biofilm attaching materials and anthracite coal (particle size 1–2 mm, packing density 0.947 g/cm3, non-uniform coefficient (K80 = d80/d10) < 2.0) was placed into the gravitational filtration bed as filter media. At an organic volumetric loading rate of 2.4 kg COD/(m3 d) and an initial filtration velocity of 5 m/h in the CFBR, the average removal efficiencies of COD, ammonia nitrogen, total nitrogen and turbidity were 90.6%, 81.4%, 64.6% and 96.7% respectively, but the treatment process seemed not to be effective in phosphorus removal. The average removal efficiency of total phosphorus was 60.1%. Additionally, the power consumption of the CFBR was less than 0.15 kWh/m3 of wastewater treated, and less than 1.5 kWh/kg BOD5 removal.  相似文献   

19.
The present work is a study to evaluate ionic liquids as a potential solvent for post-combustion CO2 capture. In order to enhance the absorption performance of a CO2 capture unit, different ionic liquids have been designed and tested. The main goal was to get a comparison between a reference liquid and selected ionic liquids. As the reference, a solution of 30 w% monoethanolamine (MEA) and water was used. A large range of different pure and diluted ionic liquids was tested with a special screening process to gain general information about the CO2 absorption performance. Based on these results, a 60 w% ionic liquid solution in water was selected and the vapour–liquid equilibrium was measured experimentally between 40 °C and 110 °C. From these curves the enthalpy of absorption for capturing CO2 into the ionic liquid was determined. With these important parameters one is able to calculate the total energy demand for stripping of CO2 from the loaded solvent for comparison of the ionic liquid based solvent with the reference MEA solvent. The energy demand of this 60 w% ionic liquid is slightly lower than that of the reference solution, resulting in possible energy savings between 12 and 16%.  相似文献   

20.
The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H2O2 and air to the system.The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H2O2 flow rate = 120 mL/h, [Fe(II)] = 7.6 mg/L, pH = 3.75 and air flow rate = 1 m3/h), a 90% mineralization was achieved in 150 min.Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H2O2 was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H2O2 was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process.Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号