首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
New comprehensive numerically solved 1D and 2D absorption rate/kinetics models have been developed, for the first time, to interpret the experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed amine system of methyldiethanolamine (MDEA) and monoethanolamine (MEA). Three MDEA/MEA weight ratios ranging from 27/03 to 23/07, over a concentration range of 2.316–1.996 kmol/m3 for MDEA and of 0.490–1.147 kmol/m3 for MEA were studied. The models take into account the coupling between chemical equilibrium, mass transfer, and the chemical kinetics of all possible chemical reactions involved in the CO2 reaction with MDEA/MEA solvent. The partial differential equations of the 1D model were solved by two numerical techniques; the finite difference method (FDM) based on in-house coded Barakat–Clark scheme and the finite element method (FEM) based on COMSOL software. The FEM comprehensive model was then used to solve the set of partial differential equations in the 2D cylindrical coordinate system setting. Both FDM and FEM produced very accurate results for both the 1D and 2D models, which were much better than our previously published simplified model. The reaction rate constant obtained for MEA blended into MDEA at 298–333 K was kMEA = 5.127 × 108 exp(−3373.8/T). In addition, the 2D model, for the first time, has provided the concentration profiles of all the species in both the radial and axial directions of the laminar jet, thereby enabling an understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed amines occur.  相似文献   

2.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

3.
A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide–tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time decreases with the increase of the initial carbon dioxide pressure up to 2.96 MPa. Beyond this pressure, the induction time is becoming relatively constant with the increase of initial carbon dioxide pressure indicating that the liquid phase is completely supersaturated with carbon dioxide. Experimental results show that the inclusion of tetrahydrofuran reduces the induction time required for hydrate formation. These observations indicate hydrate nucleation process and onset growth are more readily to occur in the presence of tetrahydrofuran. In contrast, the presence of sodium chloride prolongs the induction time due to clustering of water molecules with the ions and the salting-out effects. It is also shown that the degree of subcooling required for hydrate formation is affected by the presence of tetrahydrofuran and sodium chloride in the hydrate forming system. The presence of tetrahydrofuran in the hydrate system significantly reduces the amount of carbon dioxide uptake. The apparent rate constant, k, for those systems are reported.  相似文献   

4.
A reaction calorimeter was used to determine the enthalpies of absorption of CO2 in aqueous ammonia and in aqueous solutions of ammonium carbonate at temperatures of 35–80 °C. The heat of absorption of CO2 with 2.5 wt% aqueous ammonia solution was found to be about 70 kJ/mol CO2, which is lower than that with MEA (around 85 kJ/mol) at 35 and 40 °C. The value decreases with increased loading, but not to as low a value as expected by the carbonate–bicarbonate reaction (26.88 kJ/mol). The enthalpy of absorption of CO2 in aqueous ammonia at 60 and 80 °C decreases with loadings at first, then increases between 0.2 mol CO2/mol NH3 and 0.6 mol CO2/mol NH3, and then decreases again. The behavior of the heat of absorption of CO2 in 10 wt% ammonium carbonate solution was found to be the same as that of aqueous ammonia at loadings above 0.6 mol CO2/mol NH3. The heat of absorption increases with increasing temperature. The heats of absorption are directly related to the extent of the various reactions with CO2 and can be assessed from the species variation in the liquid phase.  相似文献   

5.
Carbon dioxide absorption using amine based solvents is a well-known approach for carbon dioxide removal. Especially with the increasing concerns about greenhouse gas emissions, there is a need for an optimization approach capable of multifactor calibration and prediction of interactions. Since conventional methods based on empirical relations are not efficiently applicable, this study investigates use of Response Surface Methodology as a strong optimization tool. A bubble column reactor was used and the effect of solvent concentration (10.0, 20.0 and 30.0 vol%), flow rate (4.0, 5.0 and 6.0 L min−1), diffuser pore size (0.5, 1.0 and 1.5 mm) and temperature (20.0, 25.0 and 30.0°C) on the absorption capacity and also overall mass transfer coefficient was evaluated. The optimization results for maintaining maximum capacity and overall mass transfer coefficient revealed that different optimization targets led to different tuned operational factors. Overall mass transfer coefficient decreased to 34.7 min−1 when the maximum capacity was the desired target. High reaction rate along with the highest absorption capacity was set as desirable two factor target in this application. As a result, a third scenario was designed to maximize both mass transfer coefficient and absorption capacity simultaneously. The optimized condition was achieved when a gas flow rate of 5.9 L min−1, MEA solution of 29.6 vol%, diffuser pore size of 0.5 mm and temperature of 20.6°C was adjusted. At this condition, mass transfer coefficient reached a maximum of 38.4 min−1, with a forecasted achievable absorption capacity of 120.5 g CO2 per kg MEA.  相似文献   

6.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

7.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   

8.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   

9.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

10.
CO2 capture and storage has gained widespread attention as an option for reducing greenhouse gas emissions. Chemical absorption and stripping of CO2 with hot potassium carbonate (K2CO3) solutions has been used in the past, however potassium carbonate solutions have a low CO2 absorption efficiency. Various techniques can be used to improve the absorption efficiency of this system with one option being the addition of promoters to the solvent and another option being an improvement in the mass transfer efficiency of the equipment. This study has focused on improving the efficiency of the packed column by replacing traditional packings with newer types of packing which have been shown to have enhanced mass transfer performance. Three different packings (Super Mini Rings (SMRs), Pall Rings and Mellapak) have been studied under atmospheric conditions in a laboratory scale column for CO2 absorption using a 30 wt% K2CO3 solution. It was found that SMR packing resulted in a mass transfer coefficient approximately 20% and 30% higher than that of Mellapak and Pall Rings, respectively. Therefore, the height of packed column with SMR packing would be substantially lower than with Pall Rings or Mellapak. Meanwhile, the pressure drop using SMR was comparable to other packings while the gas flooding velocity was higher when the liquid load was above 25 kg m−2 s−1. Correlations for predicting flooding gas velocities and pressure drop were fitted to the experimental data, allowing the relevant parameters to be estimated for use in later design.  相似文献   

11.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

12.
Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120–160 EJ/year of biomass energy is produced globally by midcentury and 200–250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions – especially the availability of carbon dioxide capture and storage (CCS) technologies – affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above $150/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer–Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.  相似文献   

13.
14.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   

15.
A series of laboratory experiments were carried out to examine the chromatographic partitioning of impurities contained in a stream of CO2 injected into a deep saline aquifer. The experiments were carried out under static (no flow) and dynamic conditions, mainly with H2S as the impurity in the CO2 stream, for 2%, 5% and 30% concentrations, and for in situ conditions of high pressure, temperature and water salinity, and also for pure water at a lower pressure and temperature. In addition, experiments were conducted using CH4, N2 and SO2 at 5% concentration as the ‘Impurity’ in the CO2 stream. The experiments show that gases in an impure stream of CO2 being injected into a deep saline aquifer will chromatographically partition at the leading edge of the gas advancing through the water-saturated porous medium as a result of differential solubility in aquifer water. The solubility of the impurity gas in the CO2 stream compared to that of CO2 is the most dominant factor in regard to the breakthrough time and initial gas concentrations in the effluent. The in situ conditions of pressure, temperature and water salinity also affect the chromatographic partitioning of CO2 and impurities contained in the injection stream through their general effect on the solubility of all gases. The concentration of the impurity gas in the feed gas stream has a secondary effect on the breakthrough and time lag decreasing with increasing concentration of the impurity gas. These experimental findings are significant for understanding the fate of the injected CO2 and associated impurities contained in an injection stream, in devising monitoring procedures and protocols, and in developing emergency response plans in case of leakage of CO2 and associated impurities.  相似文献   

16.
Carbon dioxide capture and storage (CCS) technology is gaining credibility as the best short to medium term solution for significantly reducing net carbon emissions into the atmosphere. From a capacity point of view, deep saline aquifers offer the greatest potential for CO2 storage. In this respect, well injectivity is considered a key technical and economical issue. Rock/fluid interactions – dissolution/precipitation of minerals, in particular carbonates – are currently considered as one of the principal reasons for wellbore injectivity changes in aquifers.This research investigated the mechanisms involved in injectivity losses through experimental and theoretical methods. The impact on injectivity of permeability changes occurring at various distances from the wellbore was studied using an idealised CO2 injection well flow model. A new experimental set-up was used to investigate the effect on dissolution/precipitation mechanisms of the pressure and temperature changes that the fluid is subjected to as it advances from the wellbore.Numerical modelling of the injection wellbore has shown that changes in the petrophysical properties of the reservoir several metres away from the wellbore can still have a significant impact on injectivity. As indicated by the experimental research carried out, pressure and temperature gradients that exist inside the reservoirs may lead to re-precipitation in the far field, however no significant permeability and porosity changes were detected to suggest major losses of injectivity due to these effects.  相似文献   

17.
A differential optical absorption spectrometer (DOAS) technique has been applied to monitor airborne trace pollutants including NO(2), SO(2), O(3), and HNO(2) in the ultraviolet (UV) region (290-350 nm) over a 1.5 km beam path (two ways) during an intensive measurement campaign held at Gwangju, Korea (March 2002). Their mean mixing ratios (and standard deviations) were computed as 11.3 (8.8), 1.9 (1.7), 17.1 (19.3), and 0.5 (0.4)ppbv, respectively. As a means to evaluate the performance of the long-path DOAS (LP-DOAS) system with conventional point monitoring systems (PMS), correlation analysis was conducted between the two data sets. These data sets were then inspected to account for the influence of the environmental conditions on the correlation strength between the two systems, especially with respect to light level and wind speed. To facilitate the comparison, correlation analyses were conducted after dividing the data sets for those parameters into several classes. The strength of the correlations between DOAS and meteorological parameters was also examined to evaluate their effects on the DOAS performance. It was found that, among the four pollutant species, O(3) is the most sensitive to changes in meteorological conditions in relation with atmospheric mixing conditions. The overall results of our study indicate that open-path monitoring techniques can be used to effectively diagnose air quality and be substituted for the conventional point monitoring methods with the proper consideration of those parameters affecting the DOAS sensitivity (e.g., light level and wind speed).  相似文献   

18.
The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 × 5 × 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions – 50% of [waste + (120 g Ca(OCl)2 + 290 g Na2SO4) kg?1 of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号