首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrated, aqueous piperazine (PZ) is a novel solvent for carbon dioxide (CO2) capture by absorption/stripping. One of the major advantages of PZ is its resistance to thermal degradation and oxidation.At 135 and 150 °C, 8 m PZ is up to two orders of magnitude more resistant to thermal degradation than 7 m monoethanolamine (MEA). After 18 weeks at 150 °C, only 6.3% of the initial PZ was degraded, yielding an apparent first order rate constant for amine loss of 6.1 × 10?9 s?1. PZ was the most resistant amine tested, with the other screened amines shown in order of decreasing resistance: 7 m 2-amino-2-methyl-1-propanol, 7 m Diglycolamine®, 7 m N-(2-hydroxyethyl)piperazine, 7 m MEA, 8 m ethylenediamine, and 7 m diethylenetriamine. Thermal resistance allows the use of higher temperatures and pressures in the stripper, potentially leading to overall energy savings.Concentrated PZ solutions demonstrate resistance to oxidation compared to 7 m MEA solutions. Experiments investigating metal-catalyzed oxidation found that PZ solutions were 3–5 times more resistant to oxidation than MEA. Catalysts tested were 1.0 mM iron (II), 4.0–5.0 mM copper (II), and a combination of stainless steel metals (iron (II), nickel (II), and chromium (III)). Inhibitor A reduced PZ degradation catalyzed by iron (II) and copper (II).  相似文献   

2.
Experimental work is performed with a 5A zeolite on a small laboratory column with heating from the wall. Carbon dioxide adsorption occurs at atmospheric pressure and different CO2 concentrations in nitrogen. Comparisons of different methods of desorption by heating, purge and/or vacuum are studied. Desorption by heating only leads to almost pure CO2 (around 99% purity) and a recovery nearly linear to the heating temperature, ranging from 45% at 130 °C to 79% at 210 °C. Recovery can be subsequently increased with a nitrogen purge to more than 98% but the recovered carbon dioxide is diluted due to the dispersive character of the desorption wave and the operation time is long. Increasing the flow rate decreases the desorption time but has no effect on the purity because the total purge volume remains about the same. Substitution of the purge step with a vacuum step leads to pure CO2 and almost total recovery. Desorption under vacuum only without heating leads to pure CO2 (around 99% purity) but limited recovery (85% in the present work).Desorption under vacuum seems to be more simple for large-scale applications. When using a water liquid ring pump, the temperature of the ring must be kept as low as possible to provide a high operating capacity.  相似文献   

3.
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions.  相似文献   

4.
Post-combustion carbonate looping processes are based on the capture of carbon dioxide from the flue gases of an existing power plant in a circulating fluidized bed reactor (CFB) of calcium oxide (the carbonator) particles. The calcination of calcium carbonate in a new oxy-fired CFBC power plant regenerates the sorbent (calcium oxide particles) and obtains high purity carbon dioxide. This communication presents experimental results from a small test facility (30 kWt) operated in continuous mode using two interconnected CFB reactors as carbonator and calciner. Capture efficiencies between 70 and 97% have been obtained under realistic flue gas conditions in the carbonator reactor (temperatures around 650 °C). The similarity between process conditions and those existing in CFBC power plants should allow a rapid scaling up of this technology. The next steps for this process development are also outlined.  相似文献   

5.
Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory's MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions. In MiniCAM, the deployment of PHEVs (or any technology) is determined based on its relative economics compared to all other methods of providing fuels and energy carriers to serve passenger transportation demands. Under the assumptions used in this analysis where PHEVs obtain 50–60% of the market for passenger automobiles and light-duty trucks, the ability to deploy PHEVs under the two climate policies modelled here results in over 400 million tons (MT) CO2 per year of additional cost-effective emissions reductions from the U.S. economy by 2050. In addition to investments in nuclear and renewables, one of the key technology options for mitigating emissions in the electric sector is CO2 capture and storage (CCS). The additional demand for geologic CO2 storage created by the introduction of the PHEVs is relatively modest: approximately equal to the cumulative geologic CO2 storage demanded by two to three large 1000 megawatt (MW) coal-fired power plants using CCS over a 50-year period. The introduction of PHEVs into the U.S. transportation sector, coupled with climate policies such as those examined here, could also reduce U.S. demand for oil by 20–30% by 2050 compared to today's levels.  相似文献   

6.
Post combustion carbon dioxide (CO2) capture is one of the most commonly adopted technologies for reducing industrial CO2 emissions, which is now an important goal given the widespread concern over global warming. Research on amine-based CO2 capture has mainly focused on improving effectiveness and efficiency of the CO2 capture process. Our research work focuses on studying the relationships among the significant parameters influencing CO2 production because an enhanced understanding of the intricate relationships among the parameters involved in the process is critical for improving efficiency of the CO2 capture process. This paper presents a statistical study that explores the relationships among parameters involved in the amine-based post combustion CO2 capture process at the International Centre for CO2 Capture (ITC) located in Regina, Saskatchewan of Canada. A multiple regression technique has been applied for analysis of data collected at the CO2 capture pilot plant at ITC. The parameters have been carefully selected to avoid issues of multicollinearity, and four mathematical models among the key parameters identified have been developed. The models have been tested, and accuracy of the models is found to be satisfactory. The models developed in this study describe part of the CO2 capture process and can help to predict performance of the CO2 capture process at ITC under different conditions. Some results from a preliminary validation process will also be presented.  相似文献   

7.
A short-cut method for the estimation of the minimum regeneration energy and optimum solvent flow rate in post-combustion carbon dioxide capture by absorption is presented. It is developed for comparing solvents of which only little thermo-physical data is known. The closed absorber–desorber cycle is described by an equilibrium stage model (modified Kremser equation with discretized equilibrium curves). The method can be implemented in any mathematical toolbox or as stand-alone solution. The only required input is the solubility data at absorber and desorber conditions, the heat of absorption and heat capacities. The caloric data may be estimated. The method was applied to monoethanolamine (MEA) and two solvents from the EU-project CASTOR. Comparisons with experimental results from pilot-plant studies with MEA show that the method, despite its simplicity, gives reasonable results. The method should also be useful in other applications where absorbents, of which only little data is available, need to be screened.  相似文献   

8.
Heterogeneous photocatalysed degradation of a herbicide derivative, N-(4-isopropylphenyl)-N',N'-dimethylurea (Isoproturon, 1) was investigated in aqueous suspensions of titanium dioxide by monitoring the change in absorption intensity and depletion in Total Organic Carbon content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO(2) and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and potassium persulphate (K(2)S(2)O(8)) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts. An attempt was made to identify the degradation product through GC-MS analysis technique.  相似文献   

9.
In this paper, new correlations for predicting density and the solubility of carbon dioxide in pure water as well as the aqueous sodium chloride solutions are developed, where using the generated interaction parameters, the solubility model is applied to correlate the carbon dioxide solubilities in aqueous solutions for temperatures between 300 and 400 K and pressures from 50 to 700 bar. The correlation developed for predicting density of carbon dioxide accurately works for pressures between 25 and 700 bar and temperatures between 293 and 433 K. The results have been compared with the reported data and it was found that there is a good agreement between the prediction results and observed values.  相似文献   

10.
In this article, we present a life cycle assessment (LCA) of CO2 capture and storage (CCS) for several lignite power plant technologies. The LCA includes post-combustion, pre-combustion and oxyfuel capture processes as well as subsequent pipeline transport and storage of the separated CO2 in a depleted gas field.The results show an increase in cumulative energy demand and a substantial decrease in greenhouse gas (GHG) emissions for all CO2 capture approaches in comparison with power plants without CCS, assuming negligible leakage within the time horizon under consideration. Leakage will, however, not be zero. Due to the energy penalty, CCS leads to additional production of CO2. However, the CO2 emissions occur at a much lower rate and are significantly delayed, thus leading to different, and most likely smaller, impacts compared to the no-sequestration case. In addition, a certain share of the CO2 will be captured permanently due to chemical reactions and physical trapping.For other environmental impact categories, the results depend strongly on the chosen technology and the details of the process. The post-combustion approach, which is closest to commercial application, leads to sharp increases in many categories of impacts, with the impacts in only one category, acidification, reduced. In comparison with a conventional power plant, the pre-combustion approach results in decreased impact in all categories. This is mainly due to the different power generation process (IGCC) which is coupled with the pre-combustion technology.In the case of the oxyfuel approach, the outcome of the LCA depends highly on two uncertain parameters: the energy demand for air separation and the feasibility of co-capture of pollutants other than CO2. If co-capture were possible, oxyfuel could lead to a near-zero emission power plant.  相似文献   

11.
The risk associated with storage of carbon dioxide in the subsurface can be reduced by removal of a comparable volume of existing brines (e.g. Buscheck et al., 2011). In order to avoid high costs for disposal, the brines should be processed into useful forms such as fresh and low-hardness water. We have carried out a cost analysis of treatment of typical subsurface saline waters found in sedimentary basins, compared with conventional seawater desalination. We have also accounted for some cost savings by utilization of potential well-head pressures at brine production wells, which may be present in some fields due to CO2 injection, to drive desalination using reverse osmosis. Predicted desalination costs for brines having salinities equal to seawater are about half the cost of conventional seawater desalination when we assume the energy can be obtained from excess pressure at the well head. These costs range from 32 to 40¢ per m3 permeate produced. Without well-head energy recovery, the costs are from 60 to 80¢ per m3 permeate. These costs do not include the cost of any brine production or brine reinjection wells, or pipelines to the well field, or other site-dependent factors.  相似文献   

12.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

13.
The application of post-combustion capture (PCC) processes in coal fired power stations can result in large reductions of the CO2-emissions, but the consequential decrease in generation efficiency is an important draw-back. The leading PCC technology is based on chemical absorption processes as this technology is the one whose scale-up status is closest to full-scale capture in power plants. The energy performance of this process is analysed in this contribution. The analysis shows that the potential for improvement of the energy performance is quite large. It is demonstrated that further development of the capture technology and the power plant technology can lead to generation efficiencies for power plants with 90% CO2 capture which are equivalent to the current generation efficiencies without CO2 capture, i.e. 0.4 (HHV), leading to an additional resource consumption of 16%. These improvements are possible throughout a combined improvement for the capture process and power generation processes.  相似文献   

14.
Methodology is presented for a first-order regional-scale estimation of CO2 storage capacity in coals under sub-critical conditions, which is subsequently applied to Cretaceous-Tertiary coal beds in Alberta, Canada. Regions suitable for CO2 storage have been defined on the basis of groundwater depth and CO2 phase at in situ conditions. The theoretical CO2 storage capacity was estimated on the basis of CO2 adsorption isotherms measured on coal samples, and it varies between ∼20 kt CO2/km2 and 1260 kt CO2/km2, for a total of approximately 20 Gt CO2. This represents the theoretical storage capacity limit that would be attained if there would be no other gases present in the coals or they would be 100% replaced by CO2, and if all the coals will be accessed by CO2. A recovery factor of less than 100% and a completion factor less than 50% reduce the theoretical storage capacity to an effective storage capacity of only 6.4 Gt CO2. Not all the effective CO2 storage capacity will be utilized because it is uneconomic to build the necessary infrastructure for areas with low storage capacity per unit surface. Assuming that the economic threshold to develop the necessary infrastructure is 200 kt CO2/km2, then the CO2 storage capacity in coal beds in Alberta is greatly reduced further to a practical capacity of only ∼800 Mt CO2.  相似文献   

15.
Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr (1) and daminozid (2), has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing the UV Spectroscopic analysis technique and depletion of Total Organic Carbon (TOC) content as a function of irradiation time. The degradation kinetics were studied under different conditions such as reaction pH, substrate and catalyst concentration, different types of TiO2 and in the presence of electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3) and ammonium persulphate (NH4)2S2O8 in addition to molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts. The pesticide derivative triclopyr (1) was found to degrade faster as compared to daminozid (2). An attempt was also made to identify the intermediate products formed during the photooxidation process using GC/MS analysis. Probable pathways for the formation of products have been proposed.  相似文献   

16.
A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide–tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time decreases with the increase of the initial carbon dioxide pressure up to 2.96 MPa. Beyond this pressure, the induction time is becoming relatively constant with the increase of initial carbon dioxide pressure indicating that the liquid phase is completely supersaturated with carbon dioxide. Experimental results show that the inclusion of tetrahydrofuran reduces the induction time required for hydrate formation. These observations indicate hydrate nucleation process and onset growth are more readily to occur in the presence of tetrahydrofuran. In contrast, the presence of sodium chloride prolongs the induction time due to clustering of water molecules with the ions and the salting-out effects. It is also shown that the degree of subcooling required for hydrate formation is affected by the presence of tetrahydrofuran and sodium chloride in the hydrate forming system. The presence of tetrahydrofuran in the hydrate system significantly reduces the amount of carbon dioxide uptake. The apparent rate constant, k, for those systems are reported.  相似文献   

17.
Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.  相似文献   

18.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

19.
Stakeholder involvement (SI) can include many activities, from providing information on a website to one-on-one conversations with people confronting an issue in their community. For carbon dioxide capture and storage (CCS), there are now quite a few surveys of public attitudes towards CCS that are being used to inform the design of SI efforts. These surveys, focused on the nascent commercial deployment of CCS technologies, have demonstrated that the general public has little knowledge about CCS—yet the surveys go on to collect what are known as “pseudo opinions” or “non-attitudes” of respondents who know little or nothing about CCS. Beyond establishing the lack of knowledge about CCS, the results of these surveys should not be relied upon by the larger CCS community and public and private decision makers to inform the critical task of implementing and executing SI activities. The paper discusses the issues involved in providing information as part of the survey, maintaining that such information is never unbiased and thus tends to produce pseudo opinions that reflect the pollster's or researcher's bias. Other content and methodological issues are discussed, leading to the conclusion that most of the survey results should be used neither as a gauge of public attitudes nor as an indication of public acceptance. Then the framing of SI in CCS is examined, including the assumptions that clear stakeholder acceptance is a realistic goal and that the public has a decisive say in choosing the energy technologies of the present and the future. Finally, a broader suite of SI activities is recommended as more suited to realistic and contextual goals.  相似文献   

20.
A new apparatus employing a modular, mechanically agitated gas-inducing crystallizer is used to demonstrate the capture of CO2 via hydrate crystallization. The crystallizer enhances the contact of hydrate forming gases with water and thus the rate of hydrate crystallization increases. Flue gas (CO2/N2) and fuel gas (CO2/H2) mixtures were used to represent post- and precombustion capture. A comparison between the rates of hydrate formation in different crystallizers is presented by defining a metric called the normalized rate of hydrate formation. The gas uptake and the separation efficiency for the fuel and flue gas mixtures were found to be greater compared to the results obtained in a smaller scale stirred tank reactor (Kumar et al., 2009c, Linga et al., 2008). The gas uptake and CO2 recovery for flue gas mixture in the presence of THF obtained in this work was higher than that reported in the literature with tetra-n-butyl ammonium bromide and tetra-n-butyl ammonium fluoride (Fan et al., 2009, Li et al., 2009). Although hydrate crystallization is able to capture CO2, the power required for mechanical agitation was found to be very significant. If the hydrate process is to be used industrially then hydrate crystallization must be carried out without mechanical agitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号