首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to evaluate the risk of hydrate formation in CO2 transport one has to be able to predict the water content in the fluid phase in equilibrium with the CO2-hydrate. A literature review has identified some knowledge gaps, for example, there are no results available at temperatures lower than 243.15 K (?30 °C); and none of the models found in literature predicts the water content with high accuracy. A model based on equality of water fugacity in fluid and hydrate phase is presented here and used for the predictions of water content in equilibrium with hydrates. Although this model gives better accuracy in the overall temperature and pressure ranges of measurements than the models found in the literature, it is not accurate enough to satisfy the requirements of CO2 transport. The simulation results also show that it is possible to form hydrate at low water content, such as xw = 50 vppm, if temperature is low enough. In order to verify the results and improve the model accuracy further, more experimental data in a larger temperature and pressure region are required.  相似文献   

2.
The cement industry is one of the most significant sources of anthropogenic emissions of CO2. It is connected with the specific character of the production processes, during which great quantities of CO2 are produced. Basic actions to reduce CO2 emissions recommended by the European Union's, Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries, include: reduction of fuel consumption, selection of raw materials with low content of organic compounds and fuels with low coal contribution to heating value. All actions connected with the improvement of energy conversion efficiency of the cement production process cause CO2 emissions reduction. The use of at most acceptable by the valid standards amounts of waste as raw materials and additives for cement production, also brings about the reduction of significant part of CO2 emissions. These measures have been and continue to be pursued by the cement factories in Poland. This article describes the evolution of the cement industry in Poland over the period 1998–2008 and the resulting changes in CO2 emissions and explores the drivers for these changes. The sources of CO2 emissions in cement industry have been presented in this article as well as a discussion of potential ways to reduce Polish cement industry emissions even further.  相似文献   

3.
To evaluate the risk of corrosion of cement by geosequestered CO2, samples are being retrieved from wells placed in natural CO2 deposits [e.g., Crow et al., 2009]. If the cement passing through the cap rock is carbonated, it may indicate that annular gaps or cracks have allowed carbonic acid to come into contact with the cement. However, it must be recognized that the pore water in the cap rock has become saturated with CO2 over geological time. After the well is placed, the CO2 will diffuse toward the cement and react with it. A simple analysis of the diffusion kinetics demonstrates that carbonation depths of millimeters to centimeters can be expected from this reaction within the lifetime of a well, in the absence of any cracks or gaps. Therefore, the occurrence of carbonation in cement sealing natural CO2 deposits must be interpreted with caution.  相似文献   

4.
In this study, the mechanism for the stabilization/solidification (S/S) of arsenic (As)-contaminated soils with Portland cement (PC), and cement kiln dust (CKD) using 1 N HCl extraction fluid, X-ray powder diffraction (XRPD), X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated. The degree of As immobilization after stabilization was assessed using a 1 N HCl extraction on the basis of the Korean Standard Test (KST). After 1 day of curing with 30 wt% PC and 7 days of curing with 50 wt% CKD, the concentration of As leached from the amended soils was less than the Korean countermeasure standard (3 mg L?1). The As concentrations in the leachate treated with PC and CKD were significantly decreased at pH > 3, indicating that pH had a prevailing influence on As mobility. XRPD results indicated that calcium arsenite (Ca–As–O) and sodium calcium arsenate hydrate (NaCaAsO4·7.5H2O) were present in the PC- and CKD-treated slurries as the key phases responsible for As(III) and As(V) immobilization, respectively. The XANES spectroscopy confirmed that the As(III) and As(V) oxidation states of the PC and CKD slurry samples were consistent with the speciated forms in the crystals identified by XRPD. EXAFS spectroscopy showed As–Ca bonding in the As(III)-PC and As(III)-CKD slurries. The main mechanism for the immobilization of As-contaminated soils with PC and CKD was strongly associated with the bonding between As(III) or As(V) and Ca.  相似文献   

5.
Drainable lysimeters offer the possibility to integrate heterogeneous solute leaching conditions caused by row crops and transient water regime, and to conveniently measure water and solute fluxes at the drainage outlet. To compare solute leaching behavior in and around drainable lysimeters operating under a transient water regime in potato (Solanum tuberosum L.) fields, parameters of the convective lognormal transfer (CLT) function model were fitted using bromide (Br-) flux concentrations (Cf) measured in lysimeters and from Br- resident concentrations (Cr) measured in adjacent soil cores. Expected mean values Ez(I) obtained from Cr and Cf CLT parameters were equivalent and well correlated (R2 = 0.78). However, estimated median values mu of the CLT function were smaller when derived from Cr (1.05 to 1.28) compared with Cf (1.23 to 2.14). Most mu values were also smaller than previously reported values for a 30-cm reference depth, indicating that 50% of solute mass would leach more readily in these coarse sandy soils. Higher variance and dispersion of Cr compared with those of Cf could be related to a smaller sampling support (sample size/sampling area) in the case of Cr measured by soil coring, or to disruption of solute transport mechanisms in the repacked lysimeter. Retained Br- in the top soil layer after 12 to 17 cm of cumulative drainage was indicated by measured Cr. Neither CLT function simulated well residual topsoil Cr values, indicating that Br- plant cycling or preferential flow probably interfered even though tuber Br- uptake was relatively small.  相似文献   

6.
Capturing and storing carbon dioxide (CO2) underground for thousands of years is one way to reduce atmospheric greenhouse gases, often associated with global warming. Leakage through wells is one of the major issues when storing CO2 in depleted oil or gas reservoirs. CO2-injection candidates may be new wells, or old wells that are active, closed or abandoned. In all cases, it is critical to ensure that the long-term integrity of the storage wells is not compromised. The loss of well integrity may often be explained by the geochemical alteration of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO2-related wells. However, even before any chemical degradation, changes in downhole conditions due to supercritical CO2 injections can also be responsible for cement debonding from the casing and/or from the formation, leading to rapid CO2 leakage. A new cement with better CO2 resistance is compared with conventional cement using experimental procedure and methodology simulating the interaction of set cement with injected, supercritical CO2 under downhole conditions. Geochemical experimental data and a mechanical modeling approach are presented. The use of adding expanding property to this new cement to avoid microannulus development during the CO2 injection is discussed.  相似文献   

7.
Prediction of the movement of water and solutes in the vadose zone requires information on the distribution of spatial trends and heterogeneities in porous media. The present study describes different lithofacies origination mainly from glaciofluvial deposits. Among different lithofacies, hydrological relationships were investigated. By means of a two-dimensional hydrological model it was evaluated how the flow of water and leaching of metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one) was affected. Two selected large outcrop sections consisting of glacial outwash deposits were used in the modeling study. Eleven different lithofacies were distinguished and described in terms of texture distribution, sorting, bedding style, and external boundaries based on excavated soil profiles from 27 locations representing seven predominantly sandy landforms in Denmark. Undisturbed soil columns were sampled from each of the lithofacies and brought to the laboratory to be analyzed. With respect to their soil hydraulic properties, the different lithofacies formed four different hydrofacies having relatively homogeneous, hydrogeological properties. Two large outcrop sections from one of the locations (a gravel pit) located near the terminal moraine of the former Weichsel glacier were used for the HYDRUS-2D modeling. Modeling results revealed that the spatial distribution of sedimentary bodies affected water flow and the leaching of metribuzin.  相似文献   

8.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

9.
Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.  相似文献   

10.
Gas conditioning is commonly referred to as the required processing for a produced natural gas to achieve transport and sales specifications. In this paper, gas conditioning as the processing required in the interface between CO2 capture and transport is studied for nine different natural gas fired power plant concepts and three different CO2 transport processes. Conditioning processes for both pipeline and ship transport are described and an enhanced process for volatile removal is developed. The energy requirement for the conditioning processes is normally between 90 and 120 kWh/tonne CO2; however, this depends on the pressure and composition of the captured CO2-rich stream. The loss of CO2 in the water purge is small for most capture processes. The waste streams from the gas conditioning processes can contain large amounts of CO2 and should therefore be further processed or reintroduced at an appropriate point upstream in the capture or gas conditioning process if possible. The integration benefit may vary depending on the composition of the CO2-rich stream. It could be particularly interesting for processes with “innovative reactors” (membranes, sorbents, chemical looping) to integrate CO2 capture and gas conditioning.  相似文献   

11.
The biogas upgrading by membrane separation process using a highly efficient CO2-selective polyvinylamine/polyvinylalcohol (PVAm/PVA) blend membrane was investigated by experimental study and simulation with respect to process design, operation optimization and economic evaluation. This blend membrane takes advantages of the unique CO2 facilitated transport from PVAm and the robust mechanical properties from PVA, exhibits both high CO2/CH4 separation efficiency and very good stability. CO2 transports through the water swollen membrane matrix in the form of bicarbonate. CO2/CH4 selectivity up to 40 and CO2 permeance up to 0.55 m3(STP)/m2 h bar at 2 bar were documented in lab with synthesized biogas (35% CO2 and 65% CH4). Membrane performances at varying feed pressures were recorded and used as the simulation basis in this work. The process simulation of an on-farm scale biogas upgrading plant (1000 Nm3/h) was conducted. Processes with four different membrane module configurations with or without recycle were evaluated technically and economically, and the 2-stage in cascade with recycle configuration was proven optimal among the four processes. The sensitivity of the process to various operation parameters was analyzed and the operation conditions were optimized.  相似文献   

12.
London and New York have often been hailed for their sustainable planning practices. However, when one focuses on the entire city region, there is ever-increasing car-dependent development. This paper focuses on the exurban region of the two cities investigating transport-created CO2 emissions. The research is based on the analysis of data of the National Travel Surveys of Great Britain and the USA through a quantification of personal travel and a top-down estimation of CO2 emissions. It is the exurban region that accounts for the vast majority of CO2 emissions: 77% for London and 87% for New York. In the wider region for both cities there is a policy vacuum and dearth of regional planning mechanisms to deliver policies to reduce CO2 emissions. The paper argues that transport needs to be planned at the city-regional scale.  相似文献   

13.
World water dynamics: global modeling of water resources   总被引:19,自引:0,他引:19  
The growing scarcity of fresh and clean water is among the most important issues facing civilization in the 21st century. Despite the growing attention to a chronic, pernicious crisis in world's water resources our ability to correctly assess and predict global water availability, use and balance is still quite limited. An attempt is documented here in modeling global world water resources using system dynamics approach. Water resources sector (quantity and quality) is integrated with five sectors that drive industrial growth: population; agriculture; economy; nonrenewable resources; and persistent pollution. WorldWater model is developed on the basis of the last version of World3 model. Simulations of world water dynamics with WorldWater indicate that there is a strong relationship between the world water resources and future industrial growth of the world. It is also shown that the water pollution is the most important future water issue on the global level.  相似文献   

14.
A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO(2) emissions from the cement industry in India. The CO(2) emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO(2) mitigation scenarios. A 42% reduction in the CO(2) emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO(2) emissions from the transport of raw materials to the cement plants and finished product to market are also estimated.  相似文献   

15.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

16.
There is strong world-wide interest in developing new and improved processes for post-combustion capture of CO2, often using chemical absorption. Developers of new processes make positive claims for their proposals in terms of low energy consumption, but these are usually difficult to validate. This paper demonstrates that rigorous application of thermodynamic analysis and process simulation provides a powerful way to quantitatively estimate the energy requirements of CO2-capture processes by applying the methodology to the analysis and evaluation of the chilled-ammonia process.  相似文献   

17.
Abstract

As one of the natural working fluids for the refrigeration system, CO2 has been attracting increasing attention over the last ten years. But CO2 has to work at the supercritical region for the so-called “condensation” process regarding the conventional refrigerants and evaporate at the two-phase region, and therefore results in larger throttling loss for the practical refrigeration application. Consequently, new technologies must be developed to improve the performance efficiency of the CO2 transcritical cycle, and make it to be equal or closer to that of the refrigeration system with the conventional refrigerants. In this study, an expander is employed in the CO2 transcritical cycle to replace the throttling valve, and as a result the throttling loss can be decreased significantly. The paper presents the development of a rolling piston expander and the activity items in the expander design, including the seal technology, the contact friction control, the suction design, etc. The performance experiments for the expander are conducted in the present testing system for the CO2 transcritical cycle. The results show that the recovery power of the expander is related to the revolution speed of the expander. The efficiency of the expander prototype is observed to be about 32%.  相似文献   

18.
The feasibility of the sorption enhanced water gas shift (SEWGS) process under sour conditions is shown. The sour-SEWGS process constitutes a second generation pre-combustion carbon capture technology for the application in an IGCC. As a first critical step, the suitability of a K2CO3 promoted hydrotalcite-based CO2 sorbent is demonstrated by means of adsorption and regeneration experiments in the presence of 2000 ppm H2S. In multiple cycle experiments at 400 °C and 5 bar, the sorbent displays reversible co-adsorption of CO2 and H2S. The CO2 sorption capacity is not significantly affected compared to sulphur-free conditions. A mechanistic model assuming two different sites for H2S interaction explains qualitatively the interactions of CO2 and H2S with the sorbent. On the type A sites, CO2 and H2S display competitive sorption where CO2 is favoured. The type B sites only allow H2S uptake and may involve the formation of metal sulphides. This material behaviour means that the sour-SEWGS process likely eliminates CO2 and H2S simultaneously from the syngas and that an almost CO2 and H2S-free H2 stream and a CO2 + H2S stream can be produced.  相似文献   

19.
20.
A numerical simulation model of pesticide runoff through vegetative filer strips (PRVFS) was developed as a tool for investigating the effects of pesticide transport mechanisms on VFS design in dormant-sprayed orchard. The PRVFS model was developed applying existing theories such as kinematic wave theory and mixing zone theory for pesticide transport in the bare soil area. For VFS area, the model performs flow routing by simple mass accounting in sequential segments and the pesticide mass balance by considering pesticide washoff and adsorption processes on the leaf, vegetative litter, root zone and soil. Model sensitivity analysis indicated that pesticide transfer from surface soil to overland flow and pesticide washoff from the VFS were important mechanisms affecting diazinon transport. The VFS cover ratio and rainfall intensity can be important design parameters for controlling diazinon runoff using inter-row VFS in orchard. The PRVFS model was validated using micro-ecosystem simulation of diazinon transport for 0, 50 and 100% VFS cover conditions. The PRVFS model is shown to be a beneficial tool for evaluating and analyzing possible best management practices for controlling offsite runoff of dormant-sprayed diazinon in orchards during the rainy season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号