首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

2.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

3.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

4.
5.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

6.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

7.
8.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

9.
We sketch four possible pathways how carbon dioxide capture and storage (CCS) (r)evolution may occur in the Netherlands, after which the implications in terms of CO2 stored and avoided, costs and infrastructural requirements are quantified. CCS may play a significant role in decarbonising the Dutch energy and industrial sector, which currently emits nearly 100 Mt CO2/year. We found that 15 Mt CO2 could be avoided annually by 2020, provided some of the larger gas fields that become available the coming decade could be used for CO2 storage. Halfway this century, the mitigation potential of CCS in the power sector, industry and transport fuel production is estimated at maximally 80–110 Mt CO2/year, of which 60–80 Mt CO2/year may be avoided at costs between 15 and 40 €/t CO2, including transport and storage. Avoiding 30–60 Mt CO2/year by means of CCS is considered realistic given the storage potential represented by Dutch gas fields, although it requires planning to assure that domestic storage capacity could be used for CO2 storage. In an aggressive climate policy, avoiding another 50 Mt CO2/year may be possible provided that nearly all capture opportunities that occur are taken. Storing such large amounts of CO2 would only be possible if the Groningen gas field or large reservoirs in the British or Norwegian part of the North Sea will become available.  相似文献   

10.
The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.  相似文献   

11.
This paper presents application of the chemical looping combustion (CLC) method in natural gas-fired combined cycles for power generation with CO2 capture. A CLC combined cycle consisting of single CLC-reactor system, an air turbine, a CO2-turbine and a steam cycle has been designated as the base-case cycle. The base-case cycle can achieve net plant efficiency of about 52% at an oxidation temperature of 1200 °C. In order to achieve a reasonable efficiency at lower oxidation temperatures, reheat is introduced into the air turbine by employing multi CLC-reactors. The results show that the single reheat CLC-combined cycle can achieve net plant efficiency of above 51% at oxidation temperature of 1000 °C and above 53% at the oxidation temperature of 1200 °C including CO2 compression to 110 bar. The double reheat cycle results in marginal efficiency improvement as compared to the single reheat cycle. The CLC-cycles are also compared with a conventional combined cycle with and without post-combustion capture in amine solution. All the CLC-cycles show higher net plant efficiencies with close to 100% CO2 capture as compared to a conventional combined cycle with post-combustion capture, which is very promising.  相似文献   

12.
This work provides the essential information and approaches for integration of carbon dioxide (CO2) capture units into power plants, particularly the supercritical type, so that energy utilization and CO2 emissions can be well managed in the subject power plants. An in-house model, developed at the University of Regina, Canada, was successfully used for simulating a 500 MW supercritical coal-fired power plant with a post-combustion CO2 capture unit. The simulations enabled sensitivity and parametric study of the net efficiency of the power plant, the coal consumption rate, and the amounts of CO2 captured and avoided. The parameters of interest include CO2 capture efficiency, type of coal, flue gas delivery scheme, type of amine used in the capture unit, and steam pressure supplied to the capture unit for solvent regeneration. The results show that the advancement of MEA-based CO2 capture units through uses of blended monoethanolamine–methyldiethanolamine (MEA–MDEA) and split flow configuration can potentially make the integration of power plant and CO2 capture unit less energy intensive. Despite the increase in energy penalty, it may be worth capturing CO2 at a higher efficiency to achieve greater CO2 emissions avoided. The flue gas delivery scheme and the steam pressure drawn from the power plant to the CO2 capture unit should be considered for process integration.  相似文献   

13.
The advanced zero emissions power plant (AZEP) project addresses the development of a novel “zero emissions,” gas turbine-based, power generation process to reduce local and global CO2 emissions in a cost-effective way.The key element in AZEP is an integrated MCM-reactor, in which (a) O2 is separated from air by means of a mixed-conducting membrane (MCM), (b) combustion of natural gas occurs in an N2-free environment and (c) the heat of combustion is transferred to air by heat exchange.This paper focuses on the development and testing of the ceramic components of the MCM-reactor (air separation membrane and heat exchangers). For compactness and manufacturability, a module design based on extruded square channel monoliths has been chosen. The manifold design enables gas distribution in a checkerboard pattern. Modules with contact area of >500 m2/m3 have been produced.Results from testing of the modules under close to realistic process conditions agree with model predictions. Extrapolation to AZEP process conditions gives an oxygen production rate of around 37 mol O2/(m3 s), or 15 MW/m3 power density (per net MCM volume). These values correspond to project targets and confirm the feasibility of the AZEP concept.  相似文献   

14.
This paper summarizes the results of a first-of-its-kind holistic, integrated economic analysis of the potential role of carbon dioxide (CO2) capture and storage (CCS) technologies across the regional segments of the United States (U.S.) electric power sector, over the time frame 2005–2045, in response to two hypothetical emissions control policies analyzed against two potential energy supply futures that include updated and substantially higher projected prices for natural gas. This paper's detailed analysis is made possible by combining two specialized models developed at Battelle: the Battelle CO2-GIS to determine the regional capacity and cost of CO2 transport and geologic storage; and the Battelle Carbon Management Electricity Model, an electric system optimal capacity expansion and dispatch model, to examine the investment and operation of electric power technologies with CCS against the background of other options. A key feature of this paper's analysis is an attempt to explicitly model the inherent heterogeneities that exist in both the nation's current and future electricity generation infrastructure and in its candidate deep geologic CO2 storage formations. Overall, between 180 and 580 gigawatts (GW) of coal-fired integrated gasification combined cycle with CCS (IGCC + CCS) capacity is built by 2045 in these four scenarios, requiring between 12 and 41 gigatonnes of CO2 (GtCO2) storage in regional deep geologic reservoirs across the U.S. Nearly all of this CO2 is from new IGCC + CCS systems, which start to deploy after 2025. Relatively little IGCC + CCS capacity is built before that time, primarily under unique niche opportunities. For the most part, CO2 emissions prices will likely need to be sustained at over $20/tonne CO2 before CCS begins to deploy on a large scale within the electric power sector. Within these broad national trends, a highly nuanced picture of CCS deployment across the U.S. emerges. Across the four scenarios studied here, power plant builders and operators within some North American Electric Reliability Council (NERC) regions do not employ any CCS while other regions build more than 100 GW of CCS-enabled generation capacity. One region sees as much as 50% of its geologic CO2 storage reservoirs’ total theoretical capacity consumed by 2045, while most of the regions still have more than 90% of their potential storage capacity available to meet storage needs in the second half of the century and beyond. A detailed presentation of the results for power plant builds and operation in two key regions: ECAR in the Midwest and ERCOT in Texas, provides further insight into the diverse set of economic decisions that generate the national and aggregate regional results.  相似文献   

15.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

16.
In this paper Molten Carbonate Fuel Cells (MCFCs) are considered for their potential application in carbon dioxide separation when integrated into natural gas fired combined cycles. The MCFC performs on the anode side an electrochemical oxidation of natural gas by means of CO32? ions which, as far as carbon capture is concerned, results in a twofold advantage: the cell removes CO2 fed at the cathode to promote carbonate ion transport across the electrolyte and any dilution of the oxidized products is avoided.The MCFC can be “retrofitted” into a combined cycle, giving the opportunity to remove most of the CO2 contained in the gas turbine exhaust gases before they enter the heat recovery steam generator (HRSG), and allowing to exploit the heat recovery steam cycle in an efficient “hybrid” fuel cell + steam turbine configuration. The carbon dioxide can be easily recovered from the cell anode exhaust after combustion with pure oxygen (supplied by an air separation unit) of the residual fuel, cooling of the combustion products in the HRSG and water separation. The resulting power cycle has the potential to keep the overall cycle electrical efficiency approximately unchanged with respect to the original combined cycle, while separating 80% of the CO2 otherwise vented and limiting the size of the fuel cell, which contributes to about 17% of the total power output so that most of the power capacity relies on conventional low cost turbo-machinery. The calculated specific energy for CO2 avoided is about 4 times lower than average values for conventional post-combustion capture technology. A sensitivity analysis shows that positive results hold also changing significantly a number of MCFC and plant design parameters.  相似文献   

17.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

18.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

19.
In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO2 capture is presented. This process makes use of the CaO capability for CO2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO3 is calcined, the carbonator where the CO2 produced in the combustor is captured, the supercritical steam cycle and the CO2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO2 compression system.  相似文献   

20.
Gas conditioning is commonly referred to as the required processing for a produced natural gas to achieve transport and sales specifications. In this paper, gas conditioning as the processing required in the interface between CO2 capture and transport is studied for nine different natural gas fired power plant concepts and three different CO2 transport processes. Conditioning processes for both pipeline and ship transport are described and an enhanced process for volatile removal is developed. The energy requirement for the conditioning processes is normally between 90 and 120 kWh/tonne CO2; however, this depends on the pressure and composition of the captured CO2-rich stream. The loss of CO2 in the water purge is small for most capture processes. The waste streams from the gas conditioning processes can contain large amounts of CO2 and should therefore be further processed or reintroduced at an appropriate point upstream in the capture or gas conditioning process if possible. The integration benefit may vary depending on the composition of the CO2-rich stream. It could be particularly interesting for processes with “innovative reactors” (membranes, sorbents, chemical looping) to integrate CO2 capture and gas conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号