首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A chemical absorption, post-combustion CO2 capture unit is simulated and an exergy analysis has been conducted, including irreversibility calculations for all process units. By pinpointing major irreversibilities, new proposals for efficient energy integrated chemical absorption process are suggested. Further, a natural-gas combined-cycle power plant with a CO2 capture unit has been analyzed on an exergetic basis. By defining exergy balances and black-box models for plant units, investigation has been made to determine effect of each unit on the overall exergy efficiency. Simulation of the chemical absorption plant was done using UniSim Design software with Amines Property Package. For natural-gas combined-cycle design, GT PRO software (Thermoflow, Inc.) has been used. For exergy calculations, spreadsheets are created with Microsoft Excel by importing data from UniSim and GT PRO. Results show the exergy efficiency of 21.2% for the chemical absorption CO2 capture unit and 67% for the CO2 compression unit. The total exergy efficiency of CO2 capture and compression unit is 31.6%.  相似文献   

2.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

3.
In this study, a cycle designed for capturing the greenhouse gas CO2 in a natural gas combined cycle power plant has been analyzed. The process is a pre-combustion CO2 capture cycle utilizing reforming of natural gas and removal of the carbon in the fuel prior to combustion in the gas turbine. The power cycle consists of a H2-fired gas turbine and a triple pressure steam cycle. Nitrogen is used as fuel diluent and steam is injected into the flame for additional NOx control. The heat recovery steam generator includes pre-heating for the various process streams. The pre-combustion cycle consists of an air-blown auto-thermal reformer, water–gas shift reactors, an amine absorption system to separate out the CO2, as well as a CO2 compression block. Included in the thermodynamic analysis are design calculations, as well as steady-state off-design calculations. Even though the aim is to operate a plant, as the one in this study, at full load there is also a need to be able to operate at part load, meaning off-design analysis is important. A reference case which excludes the pre-combustion cycle and only consists of the power cycle without CO2 capture was analyzed at both design and off-design conditions for comparison. A high degree of process integration is present in the cycle studied. This can be advantageous from an efficiency stand-point but the complexity of the plant increases. The part load calculations is one way of investigating how flexible the plant is to off-design conditions. In the analysis performed, part load behavior is rather good with efficiency reductions from base load operation comparable to the reference combined cycle plant.  相似文献   

4.
Existing coal-fired power plants were not designed to be retrofitted with carbon dioxide post-combustion capture (PCC) and have tended to be disregarded as suitable candidates for carbon capture and storage on the grounds that such a retrofit would be uneconomical. Low plant efficiency and poor performance with capture compared to new-build projects are often cited as critical barriers to capture retrofit. Steam turbine retrofit solutions are presented that can achieve effective thermodynamic integration between a post-combustion CO2 capture plant and associated CO2 compressors and the steam cycle of an existing retrofitted unit for a wide range of initial steam turbine designs. The relative merits of these capture retrofit integration options with respect to flexibility of the capture system and solvent upgradability will be discussed. Provided that effective capture system integration can be achieved, it can be shown that the abatement costs (or cost per tonne of CO2 to justify capture) for retrofitting existing units is independent of the initial plant efficiency. This then means that a greater number of existing power plants are potentially suitable for successful retrofits of post-combustion capture to reduce power sector emissions. Such a wider choice of retrofit sites would also give greater scope to exploit favourable site-specific conditions for CCS, such as ready access to geological storage.  相似文献   

5.
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts. While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns. This requires a holistic and system-wide environmental assessment rather than focusing on the greenhouse gases only. Life Cycle Assessment meets this criteria as it not only tracks energy and non-energy-related greenhouse gas releases but also tracks various other environmental releases, such as solid wastes, toxic substances and common air pollutants, as well as the consumption of other resources, such as water, minerals and land use. This paper presents the principles of the CO2 capture and storage LCA model developed at Imperial College and uses the pulverised coal post-combustion capture example to demonstrate the methodology in detail. At first, the LCA models developed for the coal combustion system and the chemical absorption CO2 capture system are presented together with examples of relevant model applications. Next, the two models are applied to a plant with post-combustion CO2 capture, in order to compare the life cycle environmental performance of systems with and without CO2 capture. The LCA results for the alternative post-combustion CO2 capture methods (including MEA, K+/PZ, and KS-1) have shown that, compared to plants without capture, the alternative CO2 capture methods can achieve approximately 80% reduction in global warming potential without a significant increase in other life cycle impact categories. The results have also shown that, of all the solvent options modelled, KS-1 performed the best in most impact categories.  相似文献   

6.
Among the various configurations of fossil fuel power plants with carbon capture, this paper focuses on pre-combustion techniques applied to natural gas combined cycles. With more detail, the plant configuration here addressed includes: (i) the steam reforming of natural gas, based on an air-blown autothermal process, following a recuperative pre-reforming treatment, (ii) the water gas shift producing CO2 and H2, (iii) the separation of CO2 by means of a mixed physical–chemical absorption system using a MDEA solution, and (iv) a hydrogen fuelled combined cycle.Similar configurations have been studied quite extensively, being among the most attractive for full-scale realizations in a near-mid term future. This paper proposes a detailed thermodynamic study and optimization of the plant configuration, bringing to a reliable performance estimation based on today's best available technology as far as the various plant sections are concerned (gas and steam turbine, natural gas reforming process, CO2 separation). The predicted LHV efficiency for the base configuration is about 50%. Being this value at the top of the range quoted in the open literature studies (35–50%), the paper includes a quite extensive sensitivity analysis, showing that more conservative assumptions may bring to significantly poorer performance, especially considering the pretty large number of operating parameters involved in the process.  相似文献   

7.
Hilliard completed several thermodynamic models in Aspen Plus® for modeling CO2 removal with amine solvents, including MEA–H2O–CO2. This solvent was selected to make a system model for CO2 removal by absorption/stripping. Both the absorber and the stripper used RateSep? to rigorously calculate mass transfer rates. The accuracy of the new model was assessed using a recent pilot plant run with 35 wt.% (9 m) MEA. Absorber loading and removal were predicted within 6%, and the temperature profile was approached within 5 °C. An average 3.8% difference between measured and calculated values was achieved in the stripper. A three-stage flash configuration which efficiently utilizes solar energy was developed. It reduces energy use by 6% relative to a simple stripper. Intercooling was used to reach 90% removal in the absorber at these optimized conditions.  相似文献   

8.
Electricity and hydrogen can be used as energy carriers to reduce emissions of CO2 from small and mobile energy users. One of the most promising technologies for the production of electricity and hydrogen with low CO2 emissions is coal gasification with CO2 capture and storage. Performance and cost data are presented for plants which produce electricity and hydrogen alone and plants which co-produce both of these energy carriers. The co-production plants include plants which produce a fixed ratio of hydrogen to electricity and plants which are able to vary the ratio while continuing to operate the gasification and CO2 capture parts of the plant at full load. The paper also assesses the ability of these types of plants to satisfy the varying demands for hydrogen and electricity in future energy supply systems. The lowest cost option for the scenarios assessed in the paper is the use of flexible co-production plants with underground buffer storage of hydrogen.  相似文献   

9.
This work provides the essential information and approaches for integration of carbon dioxide (CO2) capture units into power plants, particularly the supercritical type, so that energy utilization and CO2 emissions can be well managed in the subject power plants. An in-house model, developed at the University of Regina, Canada, was successfully used for simulating a 500 MW supercritical coal-fired power plant with a post-combustion CO2 capture unit. The simulations enabled sensitivity and parametric study of the net efficiency of the power plant, the coal consumption rate, and the amounts of CO2 captured and avoided. The parameters of interest include CO2 capture efficiency, type of coal, flue gas delivery scheme, type of amine used in the capture unit, and steam pressure supplied to the capture unit for solvent regeneration. The results show that the advancement of MEA-based CO2 capture units through uses of blended monoethanolamine–methyldiethanolamine (MEA–MDEA) and split flow configuration can potentially make the integration of power plant and CO2 capture unit less energy intensive. Despite the increase in energy penalty, it may be worth capturing CO2 at a higher efficiency to achieve greater CO2 emissions avoided. The flue gas delivery scheme and the steam pressure drawn from the power plant to the CO2 capture unit should be considered for process integration.  相似文献   

10.
Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. Reductions in the cost of technologies as a result of learning-by-doing, R&D investments and other factors have been observed over many decades. This study uses historical experience curves as the basis for estimating future cost trends for four types of electric power plants equipped with CO2 capture systems: pulverized coal (PC) and natural gas combined cycle (NGCC) plants with post-combustion CO2 capture; coal-based integrated gasification combined cycle (IGCC) plants with pre-combustion capture; and coal-fired oxyfuel combustion for new PC plants. We first assess the rates of cost reductions achieved by other energy and environmental process technologies in the past. Then, by analogy with leading capture plant designs, we estimate future cost reductions that might be achieved by power plants employing CO2 capture. Effects of uncertainties in key parameters on projected cost reductions also are evaluated via sensitivity analysis.  相似文献   

11.
Most of the current CO2 capture technologies are associated with large energy penalties that reduce their economic viability. Efficiency has therefore become the most important issue when designing and selecting power plants with CO2 capture. Other aspects, like reliability and operability, have been given less importance, if any at all, in the literature.This article deals with qualitative reliability and operability analyses of an integrated reforming combined cycle concept. The plant reforms natural gas into a syngas, the carbon is separated out as CO2 after a water-gas shift section, and the hydrogen-rich fuel is used for a gas turbine. The qualitative reliability analysis in the article consists of a functional analysis followed by a failure mode, effects, and criticality analysis (FMECA). The operability analysis introduces the comparative complexity indicator (CCI) concept.Functional analysis and FMECA are important steps in a system reliability analysis, as they can serve as a platform and basis for further analysis. Also, the results from the FMECA can be interesting for determining how the failures propagate through the system and their effects on the operation of the process. The CCI is a helpful tool in choosing the level of integration and to investigate whether or not to include a certain process feature. Incorporating the analytical approach presented in the article during the design stage of a plant can be advantageous for the overall plant performance.  相似文献   

12.
This paper evaluates the opportunities and associated costs for post-combustion capture at a world-scale complex refinery. It is concluded that it is technically feasible to apply post-combustion capture at such a refinery. The costs for capture and sequestration from a gasifier are calculated to be lowest at about 30 Euro per ton; this process currently already produces a concentrated CO2 stream. Next, the CO2 source most suited for capture appears to be a combined stack, but there are a number of other sources that may be targeted at comparable costs. In total these sources may form about 40% of the overall refinery emissions. Our evaluations show the costs of capture from such sources based on available amine technology will be in the range of 90–120 Euro per ton, which is about 3–4 times higher than the current carbon trading values. The capture of CO2 from a large amount of smaller CO2 sources will bring along even much higher costs. A high-level study of the CO2 emissions profile of a number of Shell refineries shows that, typically, up to 50% of the emitted CO2 may be captured at similar costs. About 10–20% of concentrated CO2 associated with hydrogen manufacturing may be captured at lower costs. The remainder of emitted dilute CO2 will bring along significantly higher costs. Based on this study, it is concluded for the justification of the implementation of post-combustion capture at refineries, either a significant increase in carbon trading values, mandatory regulations, or a major technological break-through is required.  相似文献   

13.
Amine volatility is a key screening criterion for amines to be used in CO2 capture. Excessive volatility may result in significant economic losses and environmental impact. It also dictates the capital cost of the water wash. This paper reports measured amine volatility in 7 m MEA (monoethanolamine), 8 m PZ (piperazine), 7 m MDEA (n-methyldiethanolamine)/2 m PZ (piperazine), 12 m EDA (ethylenediamine), and 5 m AMP (2-amino-2-methyl-1-propanol) at 40–60 °C with lean and rich loadings giving CO2 partial pressures of 0.5 and 5 kPa at 40 °C. The amine concentrations were chosen to maximize CO2 capture capacity at acceptable viscosity. At the lean loading condition (where volatility is of greatest interest), the amines are ranked in order of increasing volatility: 7 m MDEA/2 m PZ (6/2 ppm), 8 m PZ (8 ppm), 12 m EDA (9 ppm), 7 m MEA (31 ppm), and 5 m AMP (112 ppm). The apparent amine partial molar excess enthalpies in these systems were estimated to range from ~10 to 87 kJ/mol of amine.  相似文献   

14.
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions.  相似文献   

15.
Use of amines is one of the leading technologies for post-combustion carbon dioxide capture from gas and coal-fired power plants. This study assesses the potential environmental impact of emissions to air that result from use of monoethanol amine (MEA) as an absorption solvent for the capture of carbon dioxide (CO2). Depending on operation conditions and installed reduction technology, emissions of MEA to the air due to solvent volatility losses are expected to be in the range of 0.01–0.8 kg/tonne CO2 captured. Literature data for human and environmental toxicity, together with atmospheric dispersion model calculations, were used to derive maximum tolerable emissions of amines from CO2 capture. To reflect operating conditions with typical and with elevated emissions, we defined a scenario MEA-LOW, with emissions of 40 t/year MEA and 5 t/year diethyl amine (DEYA), and a scenario MEA-HIGH, with emissions of 80 t/year MEA and 15 t/year DEYA. Maximum MEA deposition fluxes would exceed toxicity limits for aquatic organisms by about a factor of 3–7 depending on the scenario. Due to the formation of nitrosamines and nitramines, the estimated emissions of DEYA are close to or exceed safety limits for drinking water and aquatic ecosystems. The “worst case” scenario approach to determine maximum tolerable emissions of MEA and other amines is in particular useful when both expected environmental loads and the toxic effects are associated with high uncertainties.  相似文献   

16.
In this work the feasibility of a CO2 capture system based on sodium carbonate–bicarbonate slurry and its integration with a power plant is studied. The results are compared to monoethanolamine (MEA)-based capture systems. Condensing power plant and combined heat and power plant with CO2 capture is modelled to study the feasibility of combined heat and power plant for CO2 capture.Environmental friendly sodium carbonate would be an interesting chemical for CO2 capture. Sodium carbonate absorbs CO2 forming sodium bicarbonate. The low solubility of sodium bicarbonate is a weak point for the sodium carbonate based liquid systems since it limits the total concentration of carbonate. In this study the formation of solid bicarbonate is allowed, thus forming slurry, which can increase the capacity of the solvent. With this the energy requirement of stripping of the solvent could potentially be around 3.22 MJ/kg of captured CO2 which is significantly lower than with MEA based systems which typically have energy consumption around 3.8 MJ/kg of captured CO2.Combined heat and power plants seem to be attractive for CO2 capture because of the high total energy efficiency of the plants. In a condensing power plant the CO2 capture decreases directly the electricity production whereas in a combined heat and power plant the loss can be divided between district heat and electricity according to demand.  相似文献   

17.
A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2-bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2-bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2-bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 °C, with complete regeneration occurring at 100 °C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed.  相似文献   

18.
19.
This paper presents the results of a study to develop Air Products’ air separation unit (ASU) offerings for oxyfuel coal CO2 capture projects. A scalable “reference plant” concept is described to match particular sizes of power generation equipment, taking into account factors such as safety, reliability, operating flexibility, efficiency, and low capital cost. We describe the selection of a process cycle to exploit the low purity requirements, as well as the options for compression machinery and drivers as the scale of the plant increases and the sizes of referenced equipment limit the possibilities. We also explore integration with other elements of the system, such as preheating condensate or heating and expanding pressurised nitrogen. In addition, we consider how the ASU affects the flexibility of the oxyfuel system and discuss how its power consumption can be reduced during periods of high power demand. Finally, the advantages and disadvantages of different execution strategies for air separation unit projects are discussed, as well as alternative commercial models for the supply of oxygen.  相似文献   

20.
The chilled ammonia process absorbs the CO2 at low temperature (2–10 °C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110 °C and pressure up to 100 bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2 GJ/ton CO2 can be reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号