首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of tetracycline exposure on wheat growth and the microbial community structure in the rhizosphere were investigated under hydroponic culture conditions. Exposure to various concentrations of tetracycline resulted in significant suppression of the growth of wheat roots and shoots, with minimum doses of 0.8 mg L?1 and 4 mg L?1 resulting in inhibition rates of 32% and 15.4%, respectively. Complete inhibition of the growth of these two parts of wheat plants was observed in response to treatment with tetracycline at 20 mg L?1 and 100 mg L?1, respectively. However, the germination of wheat seeds was not sensitive to exposure to tetracycline. The effects of tetracycline exposure on the microbial community in the wheat rhizosphere were evaluated through traditional cultivation and molecular biological analyses. The cultivation results indicated that bacteria were the dominant population, being present in concentrations of 1× 108–2.45× 109CFUs mL?1, although 39% to 87% inhibition occurred in response to tetracycline. The concentration of fungi increased in all tetracycline treated samples to 2.5 to 15.8 times that of the control. The highest concentration of fungi (4.27× 108 CFU mL?1) was observed in response to 60 mg L?1 tetracycline after 15 days of cultivation. In this stage, a large amount of fungal colonies was observed on the surface of the culture solution, the wheat roots became rotted and the plants became atrophic or even died. Molecular biological analysis indicated that the bacterial community structure was significantly different in samples that were exposed to high levels of tetracycline (over 20 mg L?1) than in samples that were exposed to lower concentrations. As the concentration of tetracycline increased, the diversity of the bacteria decreased. Additionally, several dominant sensitive species such as Sphingobacterium multivorum were suppressed by tetracycline, while some resistant species such as Acinetobacter sp. appeared or were conserved. The bacteria population tended to stabilize when the drug concentration exceeded 40 mg L?1.  相似文献   

2.

Ground-based ambient air monitoring was conducted to assess the contribution of crop residue burning of wheat (Triticum aestivum) and rice (Oriza sativa) at different locations in three districts (Kaithal, Kurukshetra, and Karnal) of the agricultural state of Haryana in India for two successive years (2016 and 2017). The Air Quality Index (AQI) and concentration of primary pollutants (SOx, NOx, and PM2.5) were determined in rice and wheat crop season, for burning and non-burning periods. During crop residue burning periods, concentrations of SOx, NOx, and PM2.5 were exceeded the NAAQS values by 78%, 71%, and 53%, respectively. A significant increase in SOx (4.5 times), NOx (3.8 times), and PM2.5 concentration (3.5 times) was observed in stubble burning periods as compared to pre-burning (p < 0.05). A positive and significant correlation among the three pollutant concentrations was observed (p < 0.01). The AQI of KA site in Karnal district fell in severely polluted category during 2016 for rice as well as wheat residue burning period, and of KK site in Kaithal during wheat residue burning in year 2017. Results of present study indicate a remarkable increase in pollutant concentration (SOx, NOx, and PM2.5) during the crop residue burning periods. To the best of our knowledge, the outcomes of present study in this region have not been reported in earlier reports. Hence, there is an urgent need to curb air pollution by adopting sustainable harvesting technologies and management of residues.

  相似文献   

3.

The effects of metsulfuron-methyl, a sulfonylurea herbicide, on the wheat soil microorganisms were evaluated by the methods of microbial inoculation culture, and the activities of three enzymes were measured using the colorimetric method. The tolerant microorganisms that can resist 500 μ g·g?1 metsulfuron-methyl in the counting culture medium were studied specially. Metsulfuron-methyl distinctly inhibited the common aerobic heterotriphic bacteria, but the effects on common fungi and common actinomycete were not evident. In the meantime, the number of tolerant fungi increased greatly in the rhizosphere after the application of metsulfuron-methyl in contrast to the significant decrease of the amount of tolerant actinomycete. It indicates that fungi might turn into the dominant microbial type and actinomycete is the sensitive factor in the soil polluted by sulfonylurea residues. The population of aromatic compounds–decomposing bacteria, aerobic azotobacter, and nitrite bacteria all increased in the earlier period, but the aerobic azotobacter decreased rapidly in number 30 days later, and the amount of nitrite bacteria also showed a temporary decrease with time 15 days later. However, the denitrifying bacteria just began to increase significantly after the crops had grown for 50 days. The amount of sulfur-oxidizing bacteria gradually decreased with the growth of crops, and so were the sulfate-reducing bacteria after metsulfuron-methyl application. To all types of microorganisms, there were more microbes in rhizosphere samples than those in nonrhizosphere except aerobic azotobacter. It means the growth of wheat root system can stimulate the growth of most microorganisms. The activities of hydrogen peroxidase and polyphenol oxidase in soil samples after metsulfuron-methyl application were notably lower than those in the control, and the difference of the activities between the samples of rhizosphere and nonrhizosphere was evident. On the contrary, the activity of dehydrogenase was not inhibited by the application of metsulfuron-methyl, and the rhizosphere effect was not obvious either.  相似文献   

4.

This investigation was undertaken to survey the fungal and mycotoxin contamination of South African wheat ranging from that growing in the field to processed wheat products. Samples of wheat were taken from various growing areas in South Africa and screened for fungi and mycotoxins, using a range of methodologies, including chromatography, immunoaffinity/fluorimetry, and cytotoxicity testing. Similar samples were taken from supermarkets and retail outlets in South Africa and analyzed in a similar manner. The result showed that a range of fungi and mycotoxins could be detected in wheat in all these sample types. The major fungal contaminants were Fusarium spp. and their attendant mycotoxins, in particular deoxynivalenol, which is in keeping with the observations made in the rest of the world. An interesting observation was that samples of wheat taken from the field with heavy Fusarium contamination were contaminated with fumonisin B1, which is not normally associated with this crop. Of more concern were the low but persistent levels of mycotoxins and fungi in wheat-based products sold directly to the public.  相似文献   

5.
The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg?1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.  相似文献   

6.
Triclopyr is a commonly used herbicide in the control of woody plants and can exhibit toxic effects to soil microorganisms. However, the impact on soils invaded by plant exotics has not yet been addressed. Here, we present the results of an 18-month field study conducted to evaluate the impact of triclopyr on the structure of fungal and bacterial communities in soils invaded by Acacia dealbata Link, through the use of denature gradient gel electrophoresis. After triclopyr application, analyses of bacterial fingerprints suggested a change in the structure of the soil bacterial community, whereas the structure of the soil fungal community remained unaltered. Bacterial density and F:B ratio values changed across the year but were not altered due to herbicide spraying. On the contrary, fungal diversity was increased in plots sprayed with triclopyr 5 months after the first application. Richness and diversity (H´) of both bacteria and fungi were not modified after triclopyr application.  相似文献   

7.

This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  相似文献   

8.
Major factors influencing the root-induced copper fractionation changes within the rhizosphere of maize, wheat, pea, and soybean seedlings were evaluated using a contaminated calcareous soil. The effects of acidification, alkalization, and introduction of root exudates were investigated by addition of acid, alkaline and root exudates from solution cultures, prior to incubation and copper fractionation. Raw and sterilized soils were compared for changes of copper fractionation in the rhizosphere using rhizoboxes with maize, wheat, pea and soybean seedlings. The results indicated that the general trend in considerable changes was similar among the plant species studied. The rhizosphere experienced a depletion of carbonate associated and organic bound copper along with an accumulation of exchangeable and Fe-Mn oxide bound copper. The resulting significant influence of root exudates on copper fractionation appears to have been produced through complexation rather than acidification or alkalization. The increase in exchangeable copper in rhizosphere was strengthened by microorganisms.  相似文献   

9.

Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta’omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.

  相似文献   

10.
11.
程璞  张慧  陈健 《环境工程学报》2014,8(5):2006-2012
植物的不同生长发育阶段是影响根系微生物功能多样性的原因之一。植物的生长改变了微生物的群落结构。在低有机负荷或高有机负荷下,植物幼苗与成苗根系的微生物整体活性均差异明显,一般成苗期具有较高AWCD值。有植物湿地中微生物Simpson和Mcintosh多样性指数在植物成苗期均明显高于幼苗期(P0.05),但Shannon指数变化不明显(P0.05)。无植物湿地中微生物Simpson和Mcintosh指数受季节影响差异显著(P0.05)。主成分和聚类分析结果表明,不同生长发育阶段其微生物种类存在差异,而且不同进水条件下有植物湿地和无植物湿地各自有相似的微生物群体结构。  相似文献   

12.
The potential RDX contamination of food chain from polluted soil is a significant concern in regards to both human health and environment. Using a hydroponic system and selected soils spiked with RDX, this study disclosed that four crop plant species maize (Zea mays), sorghum (Sorghum sudanese), wheat (Triticum aestivum), and soybean (Glycine max) were capable of RDX uptake with more in aerial parts than roots. The accumulation of RDX in the plant tissue is concentration-dependent up to 21 mg RDX/L solution or 100 mg RDX/kg soil but not proportionally at higher RDX levels from 220 to 903 mg/kg soil. While wheat plant tissue harbored the highest RDX concentration of 2,800 μg per gram dry biomass, maize was able to remove a maximum of 3,267 μg RDX from soil per pot by five 4-week plants at 100 mg/kg of soil. Although RDX is toxic to plants, maize, sorghum, and wheat showed reasonable growth in the presence of the chemical, whereas soybeans were more sensitive to RDX. Results of this study facilitate assessment of the potential invasion of food chain by RDX-contaminated soils.  相似文献   

13.
The effects of metsulfuron-methyl, a sulfonylurea herbicide, on the wheat soil microorganisms were evaluated by the methods of microbial inoculation culture, and the activities of three enzymes were measured using the colorimetric method. The tolerant microorganisms that can resist 500 microg x g(-1) metsulfuron-methyl in the counting culture medium were studied specially. Metsulfuron-methyl distinctly inhibited the common aerobic heterotriphic bacteria, but the effects on common fungi and common actinomycete were not evident. In the meantime, the number of tolerant fungi increased greatly in the rhizosphere after the application of metsulfuron-methyl in contrast to the significant decrease of the amount of tolerant actinomycete. It indicates that fungi might turn into the dominant microbial type and actinomycete is the sensitive factor in the soil polluted by sulfonylurea residues. The population of aromatic compounds-decomposing bacteria, aerobic azotobacter, and nitrite bacteria all increased in the earlier period, but the aerobic azotobacter decreased rapidly in number 30 days later, and the amount of nitrite bacteria also showed a temporary decrease with time 15 days later. However, the denitrifying bacteria just began to increase significantly after the crops had grown for 50 days. The amount of sulfur-oxidizing bacteria gradually decreased with the growth of crops, and so were the sulfate-reducing bacteria after metsulfuron-methyl application. To all types of microorganisms, there were more microbes in rhizosphere samples than those in nonrhizosphere except aerobic azotobacter. It means the growth of wheat root system can stimulate the growth of most microorganisms. The activities of hydrogen peroxidase and polyphenol oxidase in soil samples after metsulfuron-methyl application were notably lower than those in the control, and the difference of the activities between the samples of rhizosphere and nonrhizosphere was evident. On the contrary, the activity of dehydrogenase was not inhibited by the application of metsulfuron-methyl, and the rhizosphere effect was not obvious either.  相似文献   

14.
Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil–plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMBC), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02–0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMBC content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.  相似文献   

15.
Abstract

Biodegradation of chlorpyrifos was studied in liquid culture media amended with either single or combined eight different plant pathogenic fungi isolated from the continuous cropping wheat fields. The average recovery of chlorpyrifos from the liquid media was found to be 86.1%. The detection limit of chlorpyrifos by the analytical method used was 19 ppb. Data showed that the growth of mixed fungi at concentrations up to 200 ppm of chlorpyrifos was higher than in the control treatment. Chlorpyrifos concentrations declined in the medium of combined fungi more than it did in the medium of any single fungus with increase in the incubation period. The amount of chlorpyrifos recovered was 79.8 ppm (39.9%) in the combined fungal cultures after 21 days. However, those recovered from the media of Fusarium graminearum, F. oxysporum, Rhizoctonia solani, Cladosporhim cladosporiodes, Cephalosporium sp., Trichoderma viridi, Alternaria alternata, and Cladorrhinum brunnescens, ranged from 48.0 to 74.8%. The half‐life value (T1/2) for chlorpynfos was 15.8 day in the medium amended with mixed fungi. However, for the single cultures it ranged from 19.3 to 33.0 day.  相似文献   

16.

Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably.

  相似文献   

17.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols   总被引:12,自引:0,他引:12  
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.  相似文献   

18.
The aim of the present work was to evaluate the effect of mixtures of antifungal fractions extracted from Baccharis glutinosa and Jacquinia macrocarpa plants on the development of the filamentous fungi Aspergillus flavus and Fusarium verticillioides. The minimal inhibitory concentration that inhibited 50% of growth (MIC50) of each plant antifungal fraction was determined from the percentage radial growth inhibition of both fungi. Binomial mixtures made with both plant fractions were used at their MIC50 to determine the Fractional Inhibitory Concentration index (FIC index) for each fungus in order to evaluate their synergistic effect. Each synergistic mixture was analyzed in their effect on spore germination, spore size, spore viability, mitotic divisions, hyphal diameter and length, and number of septa per hypha. Some antifungal mixtures, even at low concentrations, showed higher antifungal effect than those of the individual antifungal fraction. The FIC indices of mixtures that showed the highest antifungal activity against A. flavus and F. verticillioides were 0.5272 and 0.4577, respectively, indicating a synergistic effect against both fungi. Only 12% and 8% of the spores of A. flavus and F. verticillioides, respectively, treated with the synergistic mixtures, were able to germinate, although their viability was not affected. An increase in the number of septa per hypha of both fungi was observed. The results indicated that the synergistic mixtures strongly affected the fungal growth even at lower concentrations than those of the individual plant fractions.  相似文献   

19.

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice–wheat and rice–maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69–100%) and irrigation (23–27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6–16%), net energy (14–26%), energy ratio (25–33%), and energy productivity (23–34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the “conservative hypothesis,” which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

  相似文献   

20.
The rhizosphere plays an important role in altering cadmium (Cd) solubility in paddy soils and Cd accumulation in rice. However, more studies are needed to elucidate the mechanism controlling rice Cd solubility and bioavailability under different rhizosphere conditions to explain the discrepancy of previous studies. A rice culture with nutrient solution and vermiculite was conducted to assess the effects of pH, Eh, and iron (Fe) concentration on Cd, Fe fractions on the vermiculite/root surface and their uptake by rice. The solution pH was set from 4.5 to 7.5, with additions of Fe (30 and 50 mg L?1) and Cd (0.5 and 0.9 mg L?1). At pH 5.5, the Eh in the rice rhizosphere was higher whereas transpiration, Cd2+, and Fe2+ adsorption on the vermiculite/root surface and accumulation in rice were lower than the other pH treatments. Cadmium addition had no impact on pH and Eh in rice rhizosphere while Fe addition decreased pH and increased Eh significantly. Compared with control, Fe addition resulted in the decrease of rhizosphere Cd, Fe solubility and bioavailability. Higher redox potential in the rice rhizosphere resulted in the decline of transpiration, Cd, and Fe accumulation in the rice tissues, suggesting that the transfer of two elements from soil to rice was depressed when the rhizosphere was more oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号