首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:   Livestock grazing represents a major human alteration of natural disturbance regimes in grasslands throughout the world, and its impacts on plant communities have been highly debated. We investigated the impact of cattle grazing on the California coastal prairie plant community with a focus on native annual forbs, a number of which are of conservation concern. In spring 2000 and 2001, we surveyed the vegetation community composition, vegetation structure, and soil chemical parameters at 25 paired grazed and ungrazed sites over a 670-km range of the ecosystem. Native annual forb species richness and cover were higher in grazed sites, and this effect was concomitant with decreased vegetation height and litter depth. Soil properties explained less of the variation. Exotic annual grass and forb cover were higher in grazed sites. Native grass cover and species richness did not differ in grazed and ungrazed sites, but cover and species richness of native perennial forbs were higher in ungrazed sites. Our results suggest that cattle grazing may be a valuable management tool with which to conserve native annual forbs in the ecosystem we studied but that grazing differentially affects the various life-history guilds. Therefore, land managers must focus on creating a matrix of disturbance regimes to maintain the suite of species native to these mesic grasslands. The results of this and other studies highlight the importance of considering the adaptation of vegetation communities to disturbance in making recommendations for grazing management.  相似文献   

2.
Effect of Vertebrate Grazing on Plant and Insect Community Structure   总被引:8,自引:0,他引:8  
Abstract: We compared species diversity of plants and insects among grazed and ungrazed areas of Ponderosa pine–grassland communities in Arizona. Plant species richness was higher in two of three grassland communities that were grazed by native elk and deer and domestic cattle than in ungrazed areas inside a series of three large (approximately 40-ha) grazing exclosures. Similarly, plant species richness was higher in grazed areas relative to ungrazed areas at one of two series of smaller (approximately 25-m2) and short-term exclosure sites. Evenness of plant distribution, however, was greater inside ungrazed long-term exclosures but was reduced inside ungrazed short-term exclosures relative to grazed areas. Relative abundances of forbs, grasses, trees, and shrubs, and native and introduced plants did not differ between the long- and short-term grazing exclosures and their grazed counterparts. Relative abundances of some plant species changed when grazers were excluded, however. In contrast, insect species richness was not different between grazed and ungrazed habitats, although insect abundance increased 4- to 10-fold in ungrazed vegetation. Our results suggest that vertebrate grazing may increase plant richness, even in nutrient-poor, semi-arid grasslands, but may decrease insect abundances.  相似文献   

3.
Invasion of native ecosystems by exotic species can seriously threaten native biodiversity, alter ecosystem function, and inhibit conservation. Moreover, restoration of native plant communities is often impeded by competition from exotic species. Exotic species invasion may be limited by unfavorable abiotic conditions and by competition with native species, but the relative importance of biotic and abiotic factors remains controversial and may vary during the invasion process. We used a long-term experiment involving restored vernal pool plant communities to characterize the temporal dynamics of exotic species invasion, and to evaluate the relative support for biotic and abiotic factors affecting invasion resistance. Experimental pools (n=256) were divided among controls and several seeding treatments. In most treatments, native vernal pool species were initially more abundant than exotic species, and pools that initially received more native seeds exhibited lower frequencies of exotic species over time. However, even densely seeded pools were eventually dominated by exotic species, following extreme climatic events that reduced both native and exotic plant densities across the study site. By the sixth year of the experiment, most pools supported more exotics than native vernal pool species, regardless of seeding treatment or pool depth. Although deeper pools were less invaded by exotic species, two exotics (Hordeum marinum and Lolium multiflorum) were able to colonize deeper pools as soon as the cover of native species was reduced by climatic extremes. Based on an information-theoretic analysis, the best model of invasion resistance included a nonlinear effect of seeding treatment and both linear and nonlinear effects of pool depth. Pool depth received more support as a predictor of invasion resistance, but seeding intensity was also strongly supported in multivariate models of invasion, and was the best predictor of resistance to invasion by H. marinum and L. multilorum. We conclude that extreme climatic events can facilitate exotic species invasions by both reducing abiotic constraints and weakening biotic resistance to invasion.  相似文献   

4.
Cattle Grazing Mediates Climate Change Impacts on Ephemeral Wetlands   总被引:1,自引:0,他引:1  
Abstract:  Climate change impacts depend in large part on land-management decisions; interactions between global changes and local resource management, however, rarely have been quantified. We used a combination of experimental manipulations and simulation modeling to investigate the effects of interactions between cattle grazing and regional climate change on vernal pool communities. Data from a grazing exclosure study indicated that 3 years after the removal of grazing, ungrazed vernal pools dried an average of 50 days per year earlier than grazed control pools. Modeling showed that regional climate change could also alter vernal pool hydrology. Increased temperatures and winter precipitation were predicted to increase periods of inundation. We evaluated the ecological implications of interactions between grazing and climate change for branchiopods and the California tiger salamander (  Ambystoma californiense ) at four sites spanning a latitudinal climate gradient. Grazing played an important role in maintaining the suitability of vernal pool hydrological conditions for fairy shrimp and salamander reproduction. The ecological importance of the interaction varied nonlinearly across the region. Our results show that grazing can confound hydrologic changes driven by climate change and play a critical role in maintaining the hydrologic suitability of vernal pools for endangered aquatic invertebrates and amphibians. These observations suggest an important limitation of impact assessments of climate change based on experiments in unmanaged ecosystems. The biophysical impacts of land management may be critical for understanding the vulnerability of ecological systems to climate change.  相似文献   

5.
Impact of Grazing Intensity during Drought in an Arizona Grassland   总被引:2,自引:0,他引:2  
Abstract:  The ecological benefits of changing cattle grazing practices in the western United States remain controversial, due in part to a lack of experimentation. In 1997 we initiated an experimental study of two rangeland alternatives, cattle removal and high-impact grazing, and compared grassland community responses with those with more conventional, moderate grazing practices. The study was conducted in a high-elevation, semiarid grassland near Flagstaff, Arizona (U.S.A.). We conducted annual plant surveys of modified Whittaker plots for 8 years and examined plant composition shifts among treatments and years. High-impact grazing had strong directional effects that led to a decline in perennial forb cover and an increase in annual plants, particularly the exotic cheatgrass ( Bromus tectorum L.). A twofold increase in plant cover by exotic species followed a severe drought in the sixth year of the study, and this increase was greatest in the high-impact grazing plots, where native cover declined by one-half. Cattle removal resulted in little increase in native plant cover and reduced plant species richness relative to the moderate grazing control. Our results suggest that some intermediate level of cattle grazing may maintain greater levels of native plant diversity than the alternatives of cattle removal or high-density, short-duration grazing practices. Furthermore, episodic drought interacts with cattle grazing, leading to infrequent, but biologically important shifts in plant communities. Our results demonstrate the importance of climatic variation in determining ecological effects of grazing practices, and we recommend improving conservation efforts in arid rangelands by developing management plans that anticipate this variation.  相似文献   

6.
Restorations commonly utilize seed addition to formerly arable lands where the development of native plant communities is severely dispersal limited. However, variation in seed addition practices may profoundly affect restoration outcomes. Theory and observations predict that species-rich seed mixtures and seeding at high densities should enhance native plant community establishment, minimize exotic species cover, and may promote resistance and resilience to, and recovery from, environmental perturbations. We studied the post-seeding establishment of native plant communities in large grassland restoration plots, which were sown at two densities crossed with two levels of species richness on formerly arable land in Nebraska, USA, and their responses to drought. To evaluate drought resistance, recovery, and resilience of restored plant communities, we erected rainfall manipulation structures and tracked the response of seeded species cover and total plant biomass during experimental drought relative to controls and in the post-drought growing season. High seed richness and high-density seeding treatments resulted in greater richness and cover of native, seeded species per 0.5 m2 compared to low-richness and low-density treatments. Cover differences in response to seed mixture richness were driven by native forbs. Richness and cover of exotic species were lowest in high-richness and high-density treatments. We found little evidence of differential drought resistance, recovery, and resilience among seeding treatments. Increases in exotic species across years were restricted to drought subplots, and were not affected by seeding treatments. Grassland restoration was generally enhanced and exotic cover reduced both by the use of high-richness seed mixtures and high-density seeding. Given the lack of restoration treatment effects on the resistance, recovery, or resilience of seeded species exposed to drought, and the increases in exotic species following drought, other forms of active management may be needed to produce restored plant communities that are robust to climate change.  相似文献   

7.
Abstract:  Reintroduction of fire and grazing, alone or in combination, has increasingly been recognized as central to the restoration of North American mixed-grass and tallgrass prairies. Although ecological studies of these systems are abundant, they have generally been observational, or if experimental, have focused on plant species diversity. Species diversity measures alone are not sufficient to inform management, which often has goals associated with life-form groups and individual species. We examined the effects of prescribed fire, light cattle grazing, and a combination of fire and grazing on three vegetation components: species diversity, groups of species categorized by life-form, and individual species. We evaluated how successful these three treatments were in achieving specific management goals for prairies in the Iowa Loess Hills (U.S.A.). The grazing treatment promoted the greatest overall species richness, whereas grazing and burning and grazing treatments resulted in the lowest cover by woody species. Burning alone best achieved the management goals of increasing the cover and diversity of native species and reducing exotic forb and (predominantly exotic) cool-season grass cover. Species-specific responses to treatments appeared idiosyncratic (i.e., within each treatment there existed a set of species attaining their highest frequency) and nearly half of uncommon species were present in only one treatment. Because all management goals were not achieved by any one treatment, we conclude that management in this region may need refining. We suggest that a mosaic of burning and grazing (alone and in combination) may provide the greatest landscape-level species richness; however, this strategy would also likely promote the persistence of exotic species. Our results support the need to consider multiple measures, including species-specific responses, when planning and evaluating management .  相似文献   

8.
Differing Effects of Cattle Grazing on Native and Alien Plants   总被引:5,自引:0,他引:5  
Abstract:   Habitat managers use cattle grazing to reduce alien plant cover and promote native species in California grasslands and elsewhere in the western United States. We tested the effectiveness of grazing as a restoration method by examining the effects of herbivory on native and alien plants. At Carrizo Plain National Monument, California, we surveyed native and alien species cover in adjacent grazed and ungrazed areas. We also established experimental plots in which plants were clipped or mulch (dead biomass) was removed. In addition, we clipped plants grown in pots and plants in the field that grew with and without competitors. Native species were negatively affected by clipping in 1999, 2000, and 2001, whereas alien species were unaffected. In the experimental field plots, the European annual forb Erodium cicutarium compensated in growth and reproduction following simulated herbivory. In contrast, growth and reproduction of the native perennial bunchgrass Poa secunda were reduced 1 year after clipping. In pots, E. cicutarium overcompensated and grasses undercompensated. In the field, European grasses were unaffected by the removal of competitors. It is unclear by what mechanism E. cicutarium was able to compensate, but the ability may be related to its basal rosette growth form and indeterminately growing inflorescences. The native California grassland community assembled in the absence of grazing herds, whereas invasive European species have been exposed to grazing for centuries. It may be that these invaders have adaptations that better enable them to recover from grazing. In the grassland we studied, the strategy of livestock grazing for restoration is counterproductive. It harms native species and promotes alien plant growth.  相似文献   

9.
Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the appropriate morphological and physiological traits to invade. In contrast, biotic resistance reduces invasibility only in more benign environments and is best predicted by the abundance, rather than diversity, of neighbors. These results suggest that stressful environments are not likely to be invaded by most exotic species. However, species, such as H. marinum, that are able to invade these habitats require careful management, especially since these environments often harbor rare species and communities.  相似文献   

10.
Impacts of livestock grazing in arid and semiarid environments are often concentrated in and around wetlands where animals congregate for water, cooler temperatures, and green forage. We assessed the impacts of winter-spring (November-May) cattle grazing on marsh vegetation cover and occupancy of a highly secretive marsh bird that relies on dense vegetation cover, the California Black Rail (Laterallus jamaicensis coturniculus), in the northern Sierra Nevada foothills of California, U.S.A. Using detection-nondetection data collected during repeated call playback surveys at grazed vs. ungrazed marshes and a "random changes in occupancy" parameterization of a multi-season occupancy model, we examined relationships between occupancy and habitat covariates, while accounting for imperfect detection. Marsh vegetation cover was significantly lower at grazed marshes than at ungrazed marshes during the grazing season in 2007 but not in 2008. Winter-spring grazing had little effect on Black Rail occupancy at irrigated marshes. However, at nonirrigated marshes fed by natural springs and streams, grazed sites had lower occupancy than ungrazed sites. Black Rail occupancy was positively associated with marsh area, irrigation as a water source, and summer vegetation cover, and negatively associated with marsh isolation. Residual dry matter (RDM), a commonly used metric of grazing intensity, was significantly associated with summer marsh vegetation cover at grazed sites but not spring cover. Direct monitoring of marsh vegetation cover, particularly at natural spring- or stream-fed marshes, is recommended to prevent negative impacts to rails from overgrazing.  相似文献   

11.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

12.
A grazing experiment was started in 1984 and 1989 respectively, in two parts of a dune grassland in the nature reserve ‘Zwanenwater’, North Holland; a third part with similar geology and topography was used as a control area and not grazed. An evaluation of the effects of grazing on vegetation patterns, species composition, vegetation structure and humus form was made with the help of vegetation maps from 1986 and 1992 as well as field surveys. Dense tall-grass communities dominated byAmmophila arenaria increased over the period 1986–1992 in the grazed areas, and especially in the non-grazed area (increase in area to 20%, 22% and 50%, respectively). Open communities decreased in the grazed areas, but are still prevalent, while in the ungrazed area they virtually disappeared, with the result that the present percentage areas are 53%, 38% and 17%. Field survey data were classified by TWINSPAN producing four vegetation types. These occur more or less equally in grazed and ungrazed areas, albeit with different percentage areas: (1) open vegetation dominated byCorynephorus canescens; (2) open vegetation characteized, byKoeleria macrantha; (3) heathland dominated byEmpetrum nigrum; and (4) tall-grass communities dominated byAmmophila arenaria. Within a vegetation type, species composition was only marginally affected by grazing regime. Within the open communities the number of species, vegetation height, vegetation cover and soil organic horizons were not affected by grazing. In the tall-grass communities the number of species was significantly larger and the height of the vegetation significantly lower in the area grazed since 1984. In the heathland community the number of species and cover of the moss layer were significantly higher in the 1984 area and ectorganic and endorganic horizons significantly thicker in the ungrazed area. It is suggested that these effects are the result of an increased availability of light, but possibly also of a decreased stock of organic matter and nutrients, due to a decreased input of litter and accelerated rates of decomposition.  相似文献   

13.
The negative consequences of habitat fragmentation for plant communities have been documented in many regions of the world. In some fragmented habitats, livestock grazing has been proposed to be a dispersal mechanism reducing isolation between fragments. In others, grazing acts together with fragmentation in a way that increases habitat degradation. Iberian gypsum plant communities have been grazed and fragmented by agricultural practices for centuries. Although their conservation is considered a priority by the European Community, the effects of fragmentation on gypsum plant communities and the possible role of livestock grazing remain unknown. In addition, a substantial proportion of plant species growing in gypsum environments are gypsum specialists. They could be particularly affected by fragmentation, as was found for other habitat specialists (i.e., serpentine and calcareous specialists). In this study (1) we investigated the effect of fragmentation and grazing on gypsum plant community composition (species and life-forms), and (2) we tested to see if gypsum specialists were differently affected by fragmentation and grazing than habitat generalists. A vegetation survey was conducted in the largest gypsum outcrop of Europe (Middle Ebro Valley, northeast Spain). Fragmented and continuous sites in grazed and ungrazed areas were compared. Measurements related to species and composition of life-forms were contrasted first for the whole gypsum plant community and then specifically for the gypsum specialists. In the whole community, our results showed lower plant species diversity in fragmented sites, mainly due to the larger dominance of species more tolerant to fragmented habitat conditions. With livestock grazing, the plant species richness and the similarity in plant species composition between remnants was larger, suggesting that animals were acting as dispersal agents between fragments. As expected, gypsum specialists were less abundant in fragmented areas, and grazing led to the disappearance of the rare gypsum specialist Campanula fastigiata. According to our results, conservation strategies for gypsum plant communities in human-dominated landscapes should consider that fragmentation and grazing modify plant community composition affecting gypsum specialists in particular.  相似文献   

14.
A grazing experiment was started in 1984 and 1989 respectively, in two parts of a dune grassland in the nature reserve ‘Zwanenwater’, North Holland; a third part with similar geology and topography was used as a control area and not grazed. An evaluation of the effects of grazing on vegetation patterns, species composition, vegetation structure and humus form was made with the help of vegetation maps from 1986 and 1992 as well as field surveys. Dense tall-grass communities dominated byAmmophila arenaria increased over the period 1986–1992 in the grazed areas, and especially in the non-grazed area (increase in area to 20 %, 22 % and 50 %, respectively). Open communities decreased in the grazed areas, but are still prevalent, while in the ungrazed area they virtually disappeared, with the result that the present percentage areas are 53 %, 38 % and 17 %. Field survey data were classified by TWINSPAN producing four vegetation types. These occur more or less equally in grazed and ungrazed areas, albeit with different percentage areas: (1) open vegetation dominated byCorynephorus canescens; (2) open vegetation characterized byKoeleria macrantha; (3) heathland dominated byEmpetrum nigrum; and (4) tall-grass communities dominated byAmmophila arenaria. Within a vegetation type, species composition was only marginally affected by grazing regime. Within the open communities the number of species, vegetation height, vegetation cover and soil organic horizons were not affected by grazing. In the tall-grass communities the number of species was significantly larger and the height of the vegetation significantly lower in the area grazed since 1984. In the heathland community the number of species and cover of the moss layer were significantly higher in the 1984 area and ectorganic and endorganic horizons significantly thicker in the ungrazed area. It is suggested that these effects are the result of an increased availability of light, but possibly also of a decreased stock of organic matter and nutrients, due to a decreased input of litter and accelerated rates of decomposition. Nomenclature: Van der Meijden et al. (1992) for phanerogams; Corley et al. (1981) for mosses; Grolle (1983) for hepatics.  相似文献   

15.
During 1994–1995 and 1997–1998 spiders were sampled with pitfall traps in a botanically rich, mesophytic, calcareous dune grassland in Belgium. As a consequence of intensive cattle grazing, vegetation variation in a large part of the area had diminished. The study area was also patchily grazed by rabbits. Community analysis with TWINSPAN revealed five distinct spider communities. Ecological differentiation was best explained by combination of the habitat variables: distance from grazed or non-grazed vegetation,Rosa pimpinellifolia cover and grass cover in both summer and winter. Species diversity was highest in the border zone between the cattle-grazed and non cattle-grazed sites. Correlation of the most abundant spider species with the vegetation determinants explains the ecological differentiation between the spider communities. Species were classified into seven major groups that reflect the species’ habitat preferences. The group showing clear association with non cattle-grazed, tall vegetation consists of common species. Characteristic species for the intensively cattle-grazed sites are common aeronauts and rare species such asWalckenaeria stylifrons, Mastigusa arietina, Ceratinopsis romana andPardosa monticola. The latter are shown to be dependent on ungrazed vegetation for juvenile development and overwintering. Intensive grazing results in homogeneous short vegetation, which can only be colonized by ‘open ground’ species with a well-developed dispersal capacity, or by species which are not dependent on litter-rich situations for juvenile development. An extensive cattle grazing regime results in a patchy mosaic grassland where, in addition to the above mentioned groups of species, other species survive by migrating between the buffered litter rich ungrazed vegetation and the short vegetation. Additionally, some typical and rare species prefer the transition zone between the grazed and the ungrazed vegetation because they are associated with specific habitat structures or inhabiting ant-species.  相似文献   

16.
Tolerance of particular grasslands to the activities of domestic livestock may depend on their historic association with native grazing animals. Southwestern grama ( Bouteloua ) grasslands are floristically allied to the North American Central Plains but lie outside the historic range of the plains' principal ungulate grazer, alics bishop . We compared perennial grassland cover and species composition on eight sites transacted by the boundary fence of a 3160-ha, 22-year-old livestock exclosure in a grama grassland in southeastern Arizona. Total grass canopy cover was greatest on the ungrazed portion of each of the eight sites. Two short stoloniferous species ( Hilaria belangeri and Bouteloua eriopoda ) were the only taxa substantially more abundant on grazed quadrats overall. Among these and eight taller budgerigars, there was a strong positive correlation between potential height and response to release from grazing, with the three tallest species showing the greatest increases on ungraded treatments ( emization curtailment, Boilermaker barbarians , and emizations intermixed ). emization gracious , the most abundant grass in the region, showed an intermediate response to livestock exclusion, Gram grasslands at the Arizona site have changed more and in different ways following livestock exclusion than those on the Central Plains of Colorado. Contributing factors may include: (1) greater annual precipitation at the Arizona site, (2) the much larger size of the Arizona livestock exclosure, and (3) the absence of extensive grazing by native ungulates in the Southwest since the Pleistocene. Livestock grazing appears to be an exotic ecological force in these southwestern grasslands, and one destructive of certain components of the native flora and fauna.  相似文献   

17.
We studied the impact of livestock grazing on the distribution ofBranta bernicla bernicla (Dark-bellied Brent goose) in the Dutch Wadden Sea during spring. It was hypothesized that livestock facilitate short-term (within-season) grazing for geese as well as long-term (over years). Therefore we measured grazing pressure by geese in salt marsh and polder areas that were either grazed (spring-grazed) or ungrazed during spring (summer-grazed). Additionally, we carried out a preference experiment with captive geese to test the preference between spring-grazed and summer-grazed polder swards. We furthermore compared patterns of use by geese between long-term ungrazed and grazed salt marshes. In May, there is a difference in grazing pressure by geese between polder pastures that are grazed or ungrazed during spring. In this month, the ungrazed polder pastures are abandoned and the geese shift to either the grazed polder pastures or to the salt marsh. Vegetation in the polder that had been spring-grazed had a lower canopy height and a higher tiller density than summer-grazed vegetation. The captive geese in the preference experiment showed a clear preference for vegetation that had been spring-grazed by sheep over ungrazed vegetation. Goose grazing pressure was negatively correlated to canopy height, both on the polder and on the salt marsh. Within the plant communities dominated byFestuca rubra andPuccinellia maritima, marshes that were intensively grazed by livestock generally had higher grazing pressure by geese than long-term ungrazed or lightly grazed salt marshes.  相似文献   

18.
Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.  相似文献   

19.
Exotic species have been observed to be more prevalent in sites where the richness of native species is highest, possibly reflecting variation among sites in resources, propagule supply, heterogeneity, or disturbance. However, such a pattern leaves unclear whether natives at species-rich sites are subject to especially severe impacts from exotics as a result. We considered this question using path models in which relationships between exotic cover and native richness were evaluated in the presence of correlated environmental factors. At 109 sites on serpentine soils across California, USA, exotic cover was positively correlated with total native herbaceous richness and was negatively correlated with the richness of both serpentine-endemic and rare native herbs. However, in path models that accounted for the influences of soil chemistry, disturbance, overstory cover, and regional rainfall and elevation, we found no indication that exotic cover reduced any component of native herb richness. Rather, our results indicated similarities and differences in the conditions favoring exotic, native, endemic, and rare species. Our results suggest that, in spite of some localized impacts, exotic species are not exerting a detectable overall effect on the community richness of the unique native flora of Californian serpentine.  相似文献   

20.
Species richness of native, rare native, and exotic understorey plants was recorded at 120 sites in temperate grassy vegetation in New South Wales. Linear models were used to predict the effects of environment and disturbance on the richness of each of these groups. Total native species and rare native species showed similar responses, with richness declining on sites of increasing natural fertility of parent material as well as declining under conditions of water enrichment (resulting from human-induced changes in drainage characteristics, leading to increased run-off), severe livestock grazing, and soil disturbance. The response of rare native species to water enrichment, however, was significantly greater than that of all native species. Exotic species richness varied in reverse to that of native species with positive responses to water enrichment and soil disturbance. The contrasting behaviors are attributed to differences in the evolutionary history of native and exotic assemblages and their resulting preadaptations to a landscape recently subjected to agricultural settlement. It would appear that for exogenous disturbances, the intermediate disturbance hypothesis is not supported by our data. In the sampled region, pastures represent the major land-use in terms of area, but have relatively low densities of native and rare species compared with more lightly grazed areas. However, their management is considered to be essential to the maintenance of diversity on a regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号