共查询到20条相似文献,搜索用时 12 毫秒
1.
The applicability of the laminar flamelet concept for the formation and destruction of nitric oxides in laminar and turbulent diffusion flames has been studied. In a first step, temperatures and species concentrations in an axisymmetric laminar diffusion flame have been calculated (i) by solving the detailed conservation equations and (ii) by applying the laminar flamelet concept. The main purpose of this step was the identification of differences between results from both approaches. It turned out that for highly temperature sensitive or relatively slow chemical processes, the inclusion of the full range of the prevailing scalar dissipation rates plays a major role for the calculated species concentrations. This behavior is obvious from the concept of the laminar flamelet model, where the scalar dissipation rate can be discussed in terms of the reciprocal of a residence time for attaining chemical equilibrium. In a second step, flamelet modeling of NOx formation was extended to a turbulent hydrogen diffusion flame. In both the steps, the flow fields of the flames were calculated by solving the Navier-Stokes equations in axisymmetric formulation using the SIMPLER algorithm. For the turbulent flow, Favre-averaged equations have been used and turbulence was modeled with the standard k-epsilon model including a correction term for axisymmetric systems. The averaging of the species concentrations was accomplished with presumed shape probability density functions (pdfs). The pdf of the mixture fraction was described with a beta-function whereas that of the scalar dissipation rate was assumed to be log-normal. Buoyancy effects have been taken into account. The calculated temperatures and concentrations were compared with data from different experiments. 相似文献
2.
Modeling aerosol formation in opposed-flow diffusion flames 总被引:2,自引:0,他引:2
The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei. 相似文献
3.
Numerical simulations of stretched laminar twin premixed flames are carried out in order to understand the gasphase formation of dioxins in situations analogous to the post combustor and following regions of a typical incinerator. A previously developed chemical kinetic mechanism, that describes dioxin formation in terms of some generic species, is used in the calculations. The results indicate a temperature region favorable to the gasphase production of dioxins that lies between 1100 and 1500 K, as well as a weak dependence of dioxin formation on the oxygen concentration in the flames. The effect of oxygen is better described by observing the consumption of some of the generic species. Though no measurements of dioxin concentration in idealized flows, such as those simulated, are available, the results are in qualitative accord with total measurements of dioxin concentration (due to both gas- and solid-phase processes) obtained by other investigators. The numerical predictions identify some flames that are ignited, in which dioxin consumption takes place, and others which are unignited, in which significant dioxin production occurs as the result of largely isothermal mixing. The calculations indicate that unignited flames containing no initial fuel favor dioxin formation significantly over those that contain some initial quantity of fuel. Finally, some implications regarding incinerator practice are discussed. 相似文献
4.
A hybrid setup consisting of low pressure burner, flow reactor and photo-ionization mass spectrometer was used for the simultaneous detection of primary soot and of flame generated nanoparticles precursing soot. The studied flames were low pressure (120-180 mbar) C2H4/O2 flames surrounded by an N2 shield. The flow reactor was not used in this study. Through variation of the burner conditions (stoichiometry, sampling height) it could be shown that nanoparticles and soot are entirely independent species. The former, in particular, are found very early in the flame and their concentration profiles do not vary very much throughout the flame. This renders the possibility that nanoparticles are emitted together with soot and consequently may constitute an additional environmental hazard. Photo-ionization mass spectrometry is well suited for the detection of these particles. 相似文献
5.
A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames 总被引:1,自引:0,他引:1
In this work, two numerical techniques, viz. the method of moments and a discrete h-p-Galerkin method, have been applied for numerical simulation of soot formation in a laminar premixed acetylene/oxygen/argon flame. From the evolution of the PAH and the soot particle size distributions, new insight into the different processes of soot formation is provided. For this, the single submodels have been examined with respect to their influence on the PAH and the soot particle size distributions. The particle inception step was studied in detail by comparing the simulated PAH size distributions with experimental results. Additionally, an estimation of the interaction energy of layered PAH dimers was performed by quantum chemical calculations. From these results, some evidence for the particle inception model employing coalescence of PAH molecules has been found. The numerical results for the gas phase chemical species, the particle number densities and volume fractions of soot as well as for the soot particle size distributions are compared with experimental data. Thereby, the consistency of the entire model is demonstrated. 相似文献
6.
《Atmospheric environment(England)》1984,18(6):1081-1089
A turbulent energy model developed by the authors to describe atmospheric flows is used to study diffusion in the convective boundary layer. The model is based on the turbulent energy transport equation coupled with eddy diffusivity expressions for momentum and heat transfer. The diffusion model assumes equality of the eddy diffusivity for heat and mass and Gaussian diffusion in the cross-stream direction. The model is shown to reproduce satisfactorily the main features of diffusion in convective flows, and its predictions compare well with the measurements of the laboratory experiments of Willis and Deardorff, as well as with field data. 相似文献
7.
针对微粒捕集器(DPF)内部碳烟及灰分颗粒特征,运用AVL-Fire软件建立了六边形孔道结构柴油机微粒捕集器模型。 针对不同排气流量、进口温度、孔密度、碳烟和灰分沉积量,对六边形孔道及四边形孔道DPF压降特性和碳烟再生特性进行分析,并研究灰分分布形式对不同孔道形状DPF的影响。 结果表明:排气质量流量越大,进口温度越高,不同孔道结构的压降敏感性增大;与传统四边形孔道DPF相比,当碳烟沉积量较低时,六边形孔道DPF压降损失较高;随着碳烟沉积量的增加,六边形孔道DPF压降损失较低,且碳烟承载量较大;灰分在DPF孔道表面层状分布可以有效阻止碳烟深床捕集模式,降低压降损失;六边形孔道DPF能够有效提高碳烟及灰分容量,且碳烟捕集及再生效率较高,再生速率较快,热应力较小,可以降低DPF主动再生频率,延长使用寿命。 相似文献
8.
《Atmospheric environment(England)》1986,20(4):741-747
A random walk model has been used for simulation of concentration patterns in complex terrain. For simplicity the problem has been treated only for line sources and two-dimensional topography. Results have been compared with wind-tunnel experiments, with a qualitatively good agreement. Although there are no difficulties from a technical point of view in applying random walk methods to complex terrain, some problems regarding the physical aspect of turbulent diffusion in inhomogenous flows still have to be considered more carefully. 相似文献
9.
10.
《Atmospheric environment(England)》1983,17(12):2477-2481
Plumes from a finite-size, finite-duration source are analyzed by using the random-force or Langevin equation model of turbulent diffusion. Initial conditions at the source are expressed in terms of the Eulerian space-time velocity autocorrelation function. Simple analytic solutions are obtained for the relative diffusion, meandering and total diffusion. 相似文献
11.
Jimenez J Claiborn C Larson T Gould T Kirchstetter TW Gundel L 《Journal of the Air & Waste Management Association (1995)》2007,57(7):868-873
In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption coefficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM(2.5); PM < 2.5 microm in aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 microg m(-3) when exposed to constant PM(2.5) concentrations of 55 +/- 1 microg m(-3) and b(scat) = 95 +/- 3 Mm(-1) from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K(ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles. 相似文献
12.
Experimental results from an isothermal laminar flow reactor at atmospheric pressure are presented on the chemical composition in the post-oxidative region of two sooting fuel-rich pre-mixed mixtures diluted in nitrogen. A base case composed of n-heptane and O2 in N2 at 1425 K with a C/O of 2.85 was perturbed by substituting 10% of the carbon in n-heptane with carbon as CH4. While these changes would intuitively reduce aromatics and soot formation by increasing H2 and decreasing C2H2 concentrations, we observe the opposite. The concentrations of individual aromatic species are observed to actually increase by up to 50% and the soot yield increases by 80%. 相似文献
13.
Yang G 《Journal of the Air & Waste Management Association (1995)》2004,54(8):898-907
Iron pentacarbonyl was added to a cocentric diffusion burner flame burning a mixture of acetylene and ethylene in a co-flowing stream of air. Samples of aerosols and gaseous species were collected within the flames and above the flames with filters and a sampling bottle, and soot volume fraction through the flame was calculated with laser light extinction measurements. Aerosol was isokinetically collected in the inhalation chamber to measure particle concentration and size distribution. Laser extinction measurement showed that iron (Fe) gave an effect on soot formation process and scanning electron microscopy of the aerosol sample showed that soot particle size for the Fe-doped flame was relatively smaller than that of non-Fe-doped flame. Transmission electron microscopy results indicated that Fe species were separated from the soot at the downstream flame. Particles of the soot and Fe mixture could be generated continuously, and the concentration was kept constant under a given experimental condition using the cocentric diffusion flame burner. The mass loading variation for each target concentration (i.e., 100, 200, and 400 microg/m3) in the inhalation chamber was less than +/-5% during 10 hr. This particle-generating burner system could be used effectively for a bioassay test to evaluate risk 相似文献
14.
15.
At sites in fractured rock where contamination has been exposed to the rock matrix for extended periods of time, the amount of contaminant mass residing in the matrix can be considerable. Even though it may be possible to diminish concentrations by the advection of clean water through the fracture features, back diffusion from mass held in the matrix will lead to a continuing source of contamination. In such an event, the development of a biofilm (a thin film of microbial mass) on the wall of the fractures may act to limit or prevent the back diffusion process. The objective of this preliminary study is to explore the influence imparted by the presence of a biofilm on the process of matrix diffusion. The investigation was conducted using radial diffusion cells constructed from rock core in which biofilm growth was stimulated in a central reservoir. Once biofilms were developed, forward diffusion experiments were conducted in which a conservative solute migrated from the central reservoir into the intact rock sample. Diffusion experiments were performed in a total of 11 diffusion cell pairs where biofilm growth was stimulated in one member of the pair and inhibited in the other. The effect of the presence of a biofilm on tracer diffusion was determined by comparison of the diffusion curves produced by each cell pair. A semi-analytical model that accounts for the presence of a biofilm was used to investigate the effect of the biofilm on mass transfer due to changes in the effective porosity, effective diffusion coefficient, and the depth of penetration of the biofilm into the intact rock. The results show that the biofilm acted to plug the rock matrix, rather than forming a discrete layer on the reservoir surface. The reduction in effective porosity due to the biofilm ranged from 6% to 52% with the majority of the samples in the 30% to 50% range. Based on the present results, with more efficient biofilm stimulation, it is reasonable to assume that a more complete plugging of the microcrack porosity might be possible, leaving a much thicker and efficient barrier than could be achieved via a surface biofilm. 相似文献
16.
《Atmospheric environment(England)》1978,12(12):2415-2423
A series of experiments were performed in an outdoor smog chamber to determine the effect of CO on the rate of SO2 oxidation in a rural air photochemical system. The presence of added CO, at concentrations ranging from 15 to 30 ppm, decreased the aerosol formation rate as measured by a condensation nuclei counter, an electrical aerosol analyzer, and X-ray fluorescence (XRF) analysis of collected aerosol. Enhanced O3 production due to the action of CO was also detected in one of the experiments. Comparison of the XRF data with results of a photochemical model shows good agreement concerning the effect of CO on the SO2 oxidation rate. This agreement supports the hypothesis that SO2 is oxidized principally by the hydroxyl and hydroperoxy radicals in the system studied. 相似文献
17.
18.
湿法净化黑烟中炭黑颗粒物的关键在于降低吸收液的表面张力并以高性能絮凝剂使其从溶液中絮凝、沉降以利于分离。选用十六烷基三甲基溴化胺(CTAB)为主要表面活性剂,使之与十二烷基苯磺酸钠(SDBS)和月桂醇聚氧乙烯(9)醚(AEO-9)进行复配实验,研究了复配液的表面张力,再向最低表面张力的复配表面活性剂溶液中投加絮凝剂聚合氯化铝(PAC)和聚丙烯酰胺(PAM),探讨絮凝剂的添加对黑烟颗粒沉降和絮凝的影响.实验结果表明:同时添加表面活性剂CTAB,SDBS和PAC,并使之浓度分别为0.5 mmol/L,0.4 mmol/L和200 mg/L时,炭黑颗粒的沉降效果最好,沉降率高达94%,且絮凝体较大,沉降时间仅为2 min。 相似文献
19.
20.
Constructed wetlands are considered to be important sources of nitrous oxide (N(2)O). In order to investigate the contribution of nitrification in N(2)O formation, some environmental factors, plant species and ammonia-oxidizing bacteria (AOB) in active layers have been compared. Vegetation cells indicated remarkable effect of seasons and different plant species on N(2)O emission and AOB amount. Nitrous oxide data showed large temporal and spatial fluctuations ranging 0-52.8 mg N(2)O m(-2)d(-1). Higher AOB amount and N(2)O flux rate were observed in the Zizania latifolia cell, reflecting high potential of global warming. Roles of plants as ecosystem engineers are summarized with rhizosphere oxygen release and organic matter transportation to affect nitrogen transformation. The Phragmites australis cell contributed to keeping high T-N removal performance and lower N(2)O emission. The distribution of AOB also supported this result. Statistical analysis showed several environmental parameters affecting the strength of observed greenhouse gases emission, such as water temperature, water level, TOC, plant species and plant cover. 相似文献