首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Arsenic resistant strains of bacteria and fungi were isolated from soil contaminated by chemical warfare agents. Until now, no metabolic products of microbial attack against the phenyl residues of the model substrate triphenylarsine (TP) were found if it was incubated together with these strains in liquid culture assays. However, one of the isolated fungi, Trichoderma harzianum As 11, was found to oxidize TP to triphenylarsineoxide (TPO). The yeast Trichosporon mucoides SBUG 801 and the white-rot fungus Phanerochaete chrysosporium were also able to oxidize the As(III) in TP. In addition, P. chrysosporium transformed phenylarsineoxide (PAO) to phenylarsonic acid (PAA) under O2-atmosphere. By means of a respirometer system, the oxidation of TP by T. harzianum As 11 was confirmed by a significantly higher consumption of oxygen in the presence of these compounds. HPLC analysis of the oxidation products TPO and PAA in the medium of the assays provided evidence for the transfer reaction of As(III) to As(V) in organic bonds. The oxidation products TPO and PAA are more hydrophilic than TP and PAO. Therefore, it was concluded that particular fungi contribute to the mobilization of arsenic in soil contaminated by chemical warfare agents.  相似文献   

2.
The polychlorinated biphenyl (PCB)-degrading bacterium, Burkholderia xenovorans LB400, was capable of transforming three hydroxylated derivatives of 2,5-dichlorobiphenyl (2,5-DCB) (2′-hydroxy- (2′-OH-), 3′-OH-, and 4′-OH-2,5-DCB) when biphenyl was used as the carbon source (i.e., biphenyl pathway-inducing condition), although only 2′-OH-2,5-DCB was transformed when the bacterium was growing on succinate (i.e., condition non-inductive of the biphenyl pathway). On the contrary, hydroyxlated derivatives of 2,4,6-trichlorobiphenyl (2,4,6-TCB) (2′-OH-, 3′-OH-, and 4′-OH-2,4,6-TCB) were not significantly transformed by B. xenovorans LB400, regardless of the carbon source used. Gene expression analyses showed a clear correlation between the transformation of OH-2,5-DCBs and expression of genes of the biphenyl pathway. The PCB metabolite, 2,5-dichlorobenzoic acid (2,5-DCBA), was produced following the transformation of OH-2,5-DCBs. 2,5-DCBA was not further transformed by B. xenovorans LB400. The present study is significant because it provides evidence that PCB-degrading bacteria are capable of transforming hydroxylated derivatives of PCBs, which are increasingly considered as a new class of environmental contaminants.  相似文献   

3.
Hwang S  Lee CH  Ahn IS  Park K 《Chemosphere》2008,72(4):572-577
When 4-(4-hydroxy-3-methoxy-phenyl)-2-butanone (vanillylacetone) was tested for manganese peroxidase (MnP)-catalyzed oxidation, it was found to be degraded with the cleavage of an aromatic ring. Among numerous products of vanillylacetone oxidation, four major ones were purified by thin-layer chromatography and identified using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analysis. Three of them maintained the aromatic ring structure and were identified as 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-butan-2-one, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-3-buten-2-one. Even though the fourth product could not be purified to a single compound, data from infrared spectroscopy showed that it did not have a benzene ring. From MS and NMR analysis, 3-(3-oxo-butyl)-hexa-2,4-dienedioic acid-1-methyl ester was tentatively suggested as the dominant species. The reaction mechanism was suggested on the basis of the structural information of these products. To our knowledge, this paper is the first report on aromatic ring cleavage of the phenolic compound by MnP.  相似文献   

4.
Zertal A  Jacquet M  Lavédrine B  Sehili T 《Chemosphere》2005,58(10):1431-1437
The photochemical behaviour of several chlorinated pesticides, namely 4-chloro-2-methylphenoxyacetic acid (MCPA), dichlorophen (DCPH), flamprop-methyl (FPM) and vinclozolin (VCZ) is studied on various kinds of sand: Fontainebleau sand (almost pure silica), Touggourt sand (coloured sand from Sahara) and Jijel sand (dark marine sand). The photodegradation of MCPA is more rapid on Fontainebleau sand than on the two others, because the former is almost colourless pure silica and the others adsorb on the internal surface of the reactor. The degradation rate decreases in the order MCPA, DCPH, FPM, VCZ. The main products identified are 4-chloro-2-methylphenol with MCPA and reduction product with DCPH.  相似文献   

5.
Capacity of enzymes of the biphenyl/chlorobiphenyl pathway, especially biphenyl dioxygenase (BPDO) of two polychlorinated biphenyls (PCB) degrading bacteria, Burkholderia sp. LB400 and Comamonas testosteroni B-356, to metabolize ortho-substituted hydroxybiphenyls was tested.,These compounds found among plant products of PCB metabolism, are carrying chlorine atoms on the hydroxyl-substituted ring. The abilities of His-tagged purified LB400 and B-356 BPDOs to catalyze the oxygenation of 2-hydroxy-3-chlorobiphenyl, 2-hydroxy-5-chlorobiphenyl and 2-hydroxy-3,5-dichlorobiphenyl were compared. Both enzyme preparations catalyzed the hydroxylation of the three chloro-hydroxybiphenyls on the non-substituted ring. Neither LB400 BPDO nor B-356 BPDO oxygenated the substituted ring of the ortho-hydroxylated biphenyl. The fact that metabolites generated by both enzymes were identical for all three hydroxychlorobiphenyls tested; exclude any other mode of attack of these compounds by LB400 BPDOs than the ortho-meta oxygenation.  相似文献   

6.
Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.  相似文献   

7.
INTRODUCTION: Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS: Abiotic dechlorination is usually slower than microbial but abiotic dechlorination is usually complete. In favourable conditions, abiotic reactions bring significant contribution to natural attenuation processes. Abiotic agents that may enhance the reductive dechlorination of chlorinated ethanes and ethenes are zero-valent metals, sulphide minerals or green rusts. OXIDATION: At some sites, permanganate and Fenton's reagent can be used as remediation tool for oxidation of chlorinated ethanes and ethenes. SUMMARY: Nanoscale iron or bimetallic particles, due to high efficiency in degradation of chlorinated ethanes and ethenes, have gained much interest. They allow for rapid degradation of chlorinated ethanes and ethenes in water phase, but they also give benefit of treating dense non-aqueous phase liquid.  相似文献   

8.
Abiotic reductive dechlorination of chlorinated ethylenes by soil   总被引:3,自引:0,他引:3  
Lee W  Batchelor B 《Chemosphere》2004,55(5):705-713
Abiotic reductive dechlorination of chlorinated ethylenes by soil in anaerobic environments was characterized to improve knowledge of the behavior of chlorinated ethylenes in natural systems, including systems modified to promote attenuation of contaminants. Target organics in the soil suspension reached sorption equilibrium in 2 days and the sorption isotherm of target organics was properly described by the linear sorption model. A modified Langmuir-Hinshelwood model was developed to describe the kinetics of reductive dechlorination of target organics by soil. The rate constants for the reductive dechlorination of chlorinated ethylenes at the reactive surfaces of reduced soils were found in the range between 0.055 (+/- 8.9%) and 2.60 (+/- 3.2%) day(-1). The main transformation products in reduced soil suspensions were C2 hydrocarbons. No chlorinated intermediates were observed at concentrations above detection limits. Five cycles of reduction of the soil followed by oxidation of the soil with trichloroethylene (TCE) did not affect the removal of TCE. The removal was affected by the reductants used and increased in the order: Fe(II) < dithionite < Fe(II) + dithionite.  相似文献   

9.
Alapi T  Dombi A 《Chemosphere》2007,67(4):693-701
The gas-phase photooxidations of CCl(4), CHCl(3), CH(2)Cl(2) and their binary mixtures in an O(2) stream were studied in a flow reactor under various experimental conditions using a low-pressure mercury lamp as light source covered with a high-purity silica sleeve being used. The 184.9 nm VUV irradiation emitted is responsible for the Cl-C bond rupture in the chlorinated methanes and for the formation of O(3) from O(2). The rate of degradation of H-containing chlorinated methanes increased sharply on increase of their initial concentrations, most probably of a (*)Cl chain reaction, as indicated by the increase in the molar ratio of the amount of HCl formed to the amount of H-containing target substance decomposed. The experimental results suggested that the further transformations of the radicals and products formed play an important role as (*)Cl sources, causing a considerably higher rate of decomposition of the H-containing target substances. In a humidified O(2) stream, the (*)OH formed opens up another route for oxidation of the target substances. Thus, the rates of degradation of CH(2)Cl(2) and CHCl(3) increased on increase of the relative humidity, whereas the water vapour had no effect at all on the decomposition of CCl(4). At the same time, competition occurs between (*)Cl or (*)OH for reactions with the target substance. The photooxidation of binary mixtures was investigated too. The addition of CCl(4) or CHCl(3) to CH(2)Cl(2) strongly increased its degradation rate. The addition of CH(2)Cl(2) did not have a considerable effect on the rate of degradation of CHCl(3).  相似文献   

10.
Yang S  Yoshida N  Baba D  Katayama A 《Chemosphere》2008,71(2):328-336
The anaerobic degradation of biphenyl was investigated in four uncontaminated Japanese paddy soils and one river sediment sample contaminated with benzene and chlorinated aliphatics. Two of the paddy soils and the sediment were capable of degrading biphenyl anaerobically without any additional medium or electron acceptors. The half-lives of biphenyl biodegradation in the three samples were 212 d in the Kuridashi soil, 327 d in the Kamajima soil, and 429 d in the river sediment. The Kuridashi soil metabolized 1+/-0.3% of [U-14C]-biphenyl into CO2 and 5+/-2% into water-soluble metabolites after 45 d of incubation. Submerged conditions, which result in lower nitrate and iron oxide contents, and neutral pH, appeared to be the common properties among the samples that influenced their degradation capacities. The addition of 10mM sulfate and 20mM Fe(III) as electron acceptors did not enhance the biphenyl degradation rate, whereas 10mM nitrate completely inhibited biphenyl degradation. The addition of different electron donors (lactate, acetate, or pyruvate) slightly slowed the degradation. Molybdate (an inhibitor of sulfate-reducing bacteria) had an inhibitory effect on biphenyl biodegradation, but bromoethanesulfonic acid (an inhibitor of methanogens) did not. Most biphenyl degradation was observed when only water was added, with no other electron acceptors or donors. These results suggest that sulfate-reducing bacteria and fermentative microbial populations play important roles in anaerobic biphenyl biodegradation in paddy soil.  相似文献   

11.
The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO(4)(2-). In the first 400 m downgradient of the source, the plume was confined to the upper 20 m of the aquifer. Further downgradient it widened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward and moved away from the source, O(2) and NO(3)(-) decreased to below detection levels, while dissolved Fe(2+) and SO(4)(2-) increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO(4)(2-). In the same zone, PCE and trichloroethene (TCE) disappeared and cis-1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of (13)C in the daughter products followed by an enrichment of (13)C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ(13)C value confirming that cDCE was not affected by abiotic or biotic degradation. Further downgradient (up to 1900 m), cDCE became enriched in (13)C by up to 8 ‰ demonstrating its further transformation while vinylchloride (VC) concentrations remained low (<1 μg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9 ‰, respectively, the detection of Dehaloccocides sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of (13)C in VC indicates that VC was transformed further, although the mechanism could not be determined. The transformation of cDCE was the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon-chlorine isotope analysis and qPCR combined with traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.  相似文献   

12.
Everted sacs of rat small intestine metabolized crufomate (4-tert-butyl-2-chlorophenyl methyl methylphosphoramidate) under in vitro conditions to form six 14C-labeled metabolites in quantities sufficient for isolation and identification. These metabolites were 4-tert-butyl-2-chlorophenyl methyl phosphoramidate (25%), 2-chloro-4(2-hydroxy-1,1-dimethylethyl)phenyl methyl methylphosphoramidate (19%), 2-[3-chloro-4-[[(methoxy) (methyl-amino)phosphoinyl]oxy]phenyl]-2-methylpropionic acid (2%), 4-tert-butyl-2-chlorophenol (0.8%) and its glucuronide (6%), and the aromatic glucuronide of 2-chloro-4(2-hydroxy-1,1-dimethylethyl)phenol (1%). These intestinal metabolites may represent precursory stages in the overall metabolism of crufomate.  相似文献   

13.
Che H  Lee W 《Chemosphere》2011,82(8):1103-1108
Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min−1), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.  相似文献   

14.
Heterogeneous photocatalytic degradation of three-selected herbicide derivatives: (1) picloram (4-Amino-3,5,6-trichloropyridine-2-carboxylic acid, (2) dicamba (2-Methoxy-3,6-dichlorobenzoic acid, and (3) floumeturon (N,N-Dimethyl-N-[3-(trifluoromethyl)phenyl]-urea) has been investigated in aqueous suspensions of titanium dioxide under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic technique and decrease in total organic carbon (TOC) content as a function of irradiation time under a variety of conditions. The degradation of the herbicide was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO2, and in the presence of electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3), and ammonium persulphate (NH4)2S2O8 besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts in the case of dicamba (2) and floumeturon (3), whereas Hombikat UV100 was found to be better for the degradation of picloram (1). The herbicide picloram (1) was found to degrade faster as compared to dicamba (2) and floumeturon (3). The degradation products were analyzed by gas chromatography-mass spectrometry (GC/MS) technique, and plausible mechanisms for the formation of products have been proposed.  相似文献   

15.
Microbial degradation of chlorinated dioxins   总被引:2,自引:0,他引:2  
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo-p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions. Anaerobic sediments have been shown to convert tetrachloro- to octachlorodibenzo-p-dioxins to lower chlorinated dioxins including monochlorinated congeners. Taken as a whole, these findings indicate that biodegradation is likely to contribute to the natural attenuation processes affecting PCDD/F compounds.  相似文献   

16.
Seol Y  Javandel I 《Chemosphere》2008,72(4):537-542
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.  相似文献   

17.
The electrolysis of some chlorinated organic compounds such as chloroacetic acids, chloromethanes and chloroethenes were carried out on a photo-irradiated n-TiO(2) electrode applied a constant potential, 1.0 V vs. Ag/AgCl, and the alternated pulse potentials of +1.0 V and various negative potentials, -1.0, -1.2 and -1.4V vs. Ag/AgCl in 0.1 mol dm(-3) Na(2)SO(4) solutions saturated with oxygen or with nitrogen. These compounds were degraded on the n-TiO(2) electrode by the photo-electrolysis and mineralized to carbon dioxide, carbon monoxide and chloride ion. When the alternated pulse potentials were applied, the mineralization yields were increased for these compounds, especially for trichloroacetic acid and carbon tetrachloride, both of which were comparatively stable to the degradation in the constant potential electrolysis. The presence of oxygen in the solution was effective for the mineralization of these compounds, while little effective for that of trichloroacetic acid and of carbon tetrachloride.  相似文献   

18.
Yamamoto T  Yasuhara A 《Chemosphere》2002,46(8):1215-1223
The chlorination of bisphenol A (BPA) in aqueous media was investigated in order to describe the degradation profile of this compound and the formation of chlorinated products. Aqueous solutions of BPA (approx. 1 mg/l) were chlorinated by sodium hypochlorite solution at room temperature and under weakly alkaline conditions. Chlorinated compounds were extracted with dichloromethane and determined by gas chromatography/mass spectrometry (GC/MS). BPA was consumed completely within 5 min of chlorination, when the initial chlorine concentration was 10.24 mg/l (molar ratio to BPA, 58.7). On the other hand, when the initial chlorine concentration was 1.03 mg/l (molar ratio, 6.56), 9.3% of BPA still remained after 60 min chlorination. Five chlorinated BPA congeners, 2-chlorobisphenol A (MCBPA), 2,6-dichlorobisphenol A (2,6-D2CBPA), 2,2'-dichlorobisphenol A (2,2'-D2CBPA), 2,2',6-trichlorobisphenol A (T3CBPA) and 2,2', 6,6'-tetrachlorobisphenol A (T4CBPA) were formed in the earlier stages of chlorination. Several chlorinated phenolic compounds, 2,4,6-trichlorophenol (T3CP), 2,6-dichloro-1,4-benzoquinone (D2CBQ), 2,6-dichloro-1,4-hydroquinone (D2CHQ), C9H10Cl2O2, C9H8Cl2O and C10H12Cl2O2, were also formed by further chlorination.  相似文献   

19.
The objective of this study is to find metal ions that enhance the ozone decomposition of chlorinated organic substances in acetic acid. Although the pseudo-first order degradation rate constant for 2,4-DCP by ozone in acetic acid in addition of Ca2+, Mg2+, Al3+ and Fe2+ were almost the same as that with no metal ion, the degradation rate in addition of Mn2+ and Fe3+ were 2.4 and 4.5 times as high as that with no metal ion, respectively. The presence of Fe3+ enhanced the degradation of 2,4-DCP by ozone in acetic acid because Fe3+-phenolate complex which have high reactivity with ozone was produced by the reaction between 2,4-DCP and Fe3+ in acetic acid.  相似文献   

20.
Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02   总被引:1,自引:0,他引:1  
Batch experiments were conducted to characterize the degradation of benzo[a]pyrene, a representative high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH), by Sphingomonas yanoikuyae JAR02. Concentrations up to the solubility limit (1.2 microg l(-1)) of benzo[a]pyrene were completely removed from solution within 20 h when the bacterium was grown on salicylate. Additional experiments with [(14)C]7-benzo[a]pyrene demonstrated 3.8% mineralization over 7 days when salicylate was present is solution, and one major radio-labeled metabolite was observed that accounted for approximately 10% of the initial radio-label. Further characterization of the radio-labeled metabolite using HPLC/MS and HPLC/MS/MS identified radio-labeled pyrene-8-hydroxy-7-carboxylic acid and unlabeled pyrene-7-hydroxy-8-carboxylic acid as novel ring-cleavage metabolites, and a benzo[a]pyrene degradation pathway was proposed. Results indicate that biostimulation of HMW PAH degradation by salicylate, a water-soluble, non-toxic substrate, has significant potential for in situ bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号