首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Careful measurements of activity concentrations of 137Cs in soil samples taken layer by layer in autumn of 1999 in Slovenia are confronted with a prediction based on the diffusion-convection equation with a boundary condition which--unlike the boundary conditions applied in the literature so far--conserves the deposited activity over time, except for the natural decay. It is shown that it is essential to consider the deposits from atmospheric nuclear weapons tests and the Chernobyl accident to arrive at a good fit to the measured data. The corresponding Green's function as well as the diffusion constant and migration speed based on the analysis are given.  相似文献   

2.
The vertical migration of (137)Cs originating from nuclear weapons fallout (NWF) and the Chernobyl accident has been studied at 33 sampling sites in western Sweden. An attempt to describe the present depth distribution with a solution to the convection-diffusion equation (CDE) with a pulse-like fallout event as the initial condition was made. A sum of two CDEs describing the NWF and Chernobyl debris was fitted to the actual depth profiles measured by soil sampling. The fitted depth profiles were used to correct in situ measurements for the actual depth distribution, showing good agreement with the accumulated activities in soil samples. As expected, the vertical migration was very slow and most caesium was still present in the upper soil layers. The ranges of the apparent convection velocity, v, and apparent diffusion coefficient, D, were between 0 and 0.35 cm/year and 0.06 and 2.63 cm(2)/year, respectively.  相似文献   

3.
After the Chernobyl accident, high activity concentrations of (137)Cs (>1 MBq m(-2)) were detected in a riparian swamp in the central-eastern part of Sweden. The objective of this study was to clarify the redistribution processes behind the accumulation of (137)Cs in the wetland. A mass balance budget of (137)Cs was calculated based on soil and sediment samples and reports in the literature. Results showed that accumulation occurred over several years. Of all the (137)Cs activity discharged between 1986 and 2002 from the upstream lake, 29% was estimated to be retained in the wetland. In 2003, measurements showed that 17 kBq m(-2) sedimented on the stream banks of the wetland. Continuing overbank sedimentation by spring flooding prolongs the time that the wetland will contain high activity concentrations of (137)Cs. Consequently, organisms living in wetlands serving as sinks for (137)Cs may become exposed over long time periods to high activity concentrations.  相似文献   

4.
Austria ranks among the countries that have been most strongly affected by the Chernobyl fallout. The mean contamination with 137Cs is 21.0 kBq/m2, of which 18.7 kBq/m2 is due to the Chernobyl accident, whereas global fallout contributes 2.3 kBq/m2. Maximum values of total 137Cs contamination are nearly 200 kBq/m2. Total deposition of Chernobyl 137Cs on Austrian territory is 1.6 PBq or a fraction of around 2% of the 137Cs released from the reactor. 2115 measurements were used to draw the Austrian "caesium map". The geographical pattern of fallout distribution shows regional differences of contamination as high as 1:100.  相似文献   

5.
Studies were made during 1990-1997 on the transfer of 137Cs from soil to vegetation (herbage) and to grazing lambs on a mountain farm with an uncultivated grazing area of about 10 km2. The farm is situated in an area in Northern Sweden which was contaminated by the Chernobyl fallout in 1986. The mean concentration of 137Cs in the soil to a depth of 10 cm for eight sampling sites observed in the 8-year period was 14.51 kBq/m2, while in the cut herbage the average concentration was 859 Bq/kg d.w. and in lamb meat 682 Bq/kg w.w. A slow vertical migration of 137Cs in the 0-10 cm soil layer was indicated. Although the 137Cs concentration in herbage gradually decreased, the concentration in lamb meat varied from year to year. Soil ingestion by the lambs as a pathway for activity transfer was shown to be negligible, while ingestion of fungi with high concentrations of 137Cs was demonstrated to occur, as large numbers of fungi spores were counted in samples of the lambs' faeces. Fungi ingestion might therefore partly explain the varying mean yearly 137Cs concentrations in lamb muscle. The mean transfer parameters were as follows: for "soil to herbage" 61.3 Bq/kg d.w. herbage per kBq/m2 soil, for "herbage to lamb meat" 0.81 Bq/kg w.w. meat per Bq/kg d.w. herbage, and for "soil to lamb meat" 47.1 Bq/kg w.w. meat per kBq/m2 soil. A trend of decreasing values of the transfer parameter for "soil to herbage" indicated that 137Cs was becoming less available for root-uptake with time. The effective ecological half-life of 137Cs in soil, herbage and lamb meat was calculated to be 19, 7 and 16 years, respectively. It can be concluded that natural areas are vulnerable to 137Cs contamination, resulting in high concentrations in plants, fungi and lamb meat for a long time.  相似文献   

6.
The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 microm, 2-63 microm and >63 microm. 137Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of 134Cs/137Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between 137Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and 137Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to "ageing" processes of radiocaesium in soils.  相似文献   

7.
In this article the distribution of fission products and actinides in a soil profile from Novo Bobovicky in Russia, which was contaminated due to the Chernobyl nuclear power plant accident, is described. The ground deposition of long-lived fission products determined by gamma-spectrometry was (recalculated to 26 April 1986) 1600 kBq (137)Cs/m(2), 900 kBq (134)Cs/m(2) and 60 kBq (125)Sb/m(2). Of these radionuclides (137)Cs shows the dominating activity at the present time. After 6.5 years 90% of the Cs and Sb activity was contained in the upper 4 cm. A (239,240)Pu ground deposition of 77.4+/-8.0 Bq/m(2) was determined by alpha-spectrometry. The (238)Pu/(239,240)Pu activity ratio of 0.30+/-0.03 and (241)Pu/(239,240)Pu activity ratio of 115+/-14 (in 1986) measured in the soil profile, indicates that the analysed Pu originates mainly from the Chernobyl accident. The average (234)U/(238)U activity ratio of 1.06+/-0.29 indicates that the uranium in this soil is dominated by naturally occurring uranium.The alpha- and beta-autoradiography revealed that the activity is mainly present in particulate form. It could further be observed that the spots containing alpha- or beta-activity originated from different particles. A comparison of alpha-autoradiography with the bulk Pu and Am activity showed that 92% of the alpha-activity was present as clearly detectable alpha-spots.The beta-active particles, located by beta-autoradiography were correlated with gamma-spectrometric measurements and contained only (137)Cs. These hot spots ranged from 0.02 to 0.15 Bq.It could be concluded that the vertical transport of (137)Cs and fuel fragments occurs mainly by movement of particles through the soil. It could also be concluded that the fuel fragments found, in this soil were depleted in respect to Cs, Sb and Eu.Comparison of the analysed (238)Pu/(239,240)Pu, (241)Pu/(239,240)Pu and (241)Am/(239,240)Pu ratios with the ratios calculated with ORIGEN-S code gave an estimate of the average burn-up of the fuel particles to be in the range of 11-12 GWd/tU.The results presented in this article are valid for this single soil profile and should not be generalised unless validated in a more rigorous study of a larger number of soil profiles.  相似文献   

8.
The aims of the present research are to describe the amounts, and the variation with time, of 134Cs and 137Cs in spruce-twigs (P. abies karst.) and in the soil of a spruce forest in Switzerland following deposition of the Chernobyl fallout. The activity of the twigs was subdivided into 3 compartments: the activity on their surfaces (i.e. the activity which can be removed from the twigs along with their natural wax coating), the activity incorporated into the needles and, finally, the activity incorporated into the wood. These compartments were separately sampled 6 times over a period from 54 to 233 days after the Chernobyl incident. Twigs which sprouted in two successive years (1985, 1986) were sampled and were found to show different behaviours. The activities associated with the 1986 twigs were roughly constant with time, while those of the 1985 twigs decreased exponentially, with half-lives around 150 days. The mean activity associated with 1 g (dry) of 1985 twigs is 724 mBq 137Cs g−1, of which 58% is incorporated into the twig wood, 17% into the needles and 25% associated with the adhering aerosol. 137Cs on the surface of the needles was found to be water-insoluble. It is believed to be strongly adsorbed on to the soil-derived fraction of the aerosol residing on the needle surface and thus provides a tracer for studying the behaviour of natural aerosols on such surfaces.The same soil profile was measured before and after the Chernobyl incident, allowing direct comparison between nuclear weapons and Chernobyl fallout. The latter is mainly (56%) stored in the litter layer, with only 4% below a depth of 13 cm; it has penetrated into the soil to a much lesser extent than weapons fallout. The forest soil inventory of 137Cs showed 2600 Bq m−2 from nuclear weapons fallout and 6200 Bq m−2 from Chernobyl.The 134Cs/137Cs activity ratio of the Chernobyl fallout was found to be 0·58 ± 0·01; the activity ratios in the different compartments investigated prove that incorporation of Cs into spruce occurred exclusively by uptake through the needles. A rough estimate indicates that in a spruce forest the activity stored in the twigs is half that stored in the soil.  相似文献   

9.
Forty-four soil samples were taken around the nuclear research centre Rez, near Prague. The mean activity concentrations of 238Pu, 239,240Pu, 241Am, 90Sr and 137Cs in uncultivated soil were 0.010, 0.26, 0.12, 2.7 and 23 Bq.kg(-1), respectively. Contents of radionuclides in cultivated soil were lower and in forest soil higher than in uncultivated soil. The mean activity ratios of 238Pu/239,240Pu, 241Am/239,240Pu, 90Sr/239,240Pu and 239,240Pu/137Cs in uncultivated soil were 0.041, 0.47, 10.9 and 0.013, respectively. The mean activity ratios in cultivated and forest soils were close to the values given above. It follows from the results that the source of 239,240Pu, 90Sr and 137Cs in the studied area is deposition from atmospheric nuclear tests, in the case of 137Cs also deposition from Chernobyl accident. The contribution of the research centre effluents was not proved for these radionuclides. Increased activity ratio of 241Am/239,240Pu indicates the presence of 241Am in the soils studied emanating from sources other than nuclear tests. Uniform distribution of the 241Am/239,240Pu activity ratio around the nuclear research centre and the absence of an area with evidently higher activity ratio, including at sites lying in the main wind direction, suggest that the additional activity of 241Am does not originate from the nuclear research centre. The additional source might be the deposition following the Chernobyl accident.  相似文献   

10.
About 17 years after the Chernobyl accident, lichen samples were collected in an alpine region in Austria (Bad Gastein), which was heavily contaminated by the Chernobyl fallout. Measured 137Cs activity concentrations in selected lichens (Cetraria islandica, Cetraria cucullata, and Cladonia arbuscula) ranged from 100 to 1100 Bq kg(-1) dry weight, depending on lichen species and sampling site. Ecological half-lives for 137Cs in different lichen samples, obtained by comparison with earlier measurements of the same lichen species at the same site, ranged from 2 to 6 years, with average values between 3 and 4 years. Comparison with earlier studies indicated that ecological half-lives hardly changed during the last 10 years, suggesting that ecological clearance mechanisms (e.g. washout or soil transfer) did not vary substantially at the selected sampling area.  相似文献   

11.
The activity concentrations of (237)Np and the two Pu isotopes, (239)Pu and (240)Pu, were determined in lichen samples (Cladonia stellaris) contaminated by fallout from atmospheric nuclear test explosions and the Chernobyl accident. The samples were collected at 18 locations in Sweden, from north to south, between 1986 and 1988 and analysed with high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and alpha spectrometry. Data on the activity ratios (238)Pu/(239+240)Pu and (134)Cs/(137)Cs measured previously were also included in this study for comparison. The (237)Np activity concentration ranged from 0.08 +/- 0.01 to 2.08 +/- 0.17 MBq kg(-1), depending on the location of the sampling site and time of collection. The (239+240)Pu activity concentration ranged from 0.09 +/- 0.01 to 4.09 +/- 0.15 Bq kg(-1), with the (240)Pu/(239)Pu atomic ratio ranging between 0.16 +/- 0.01 and 0.44 +/- 0.03, the higher ratios indicating a combination of weapons test fallout and Chernobyl fallout. The (237)Np/(239)Pu atomic ratios ranged between 0.06 +/- 0.01 and 0.42 +/- 0.04, the lower ratios indicating combination of weapons test fallout and Chernobyl fallout. At a well-defined sampling site at Lake Rogen (62.32 degrees N, 12.38 degrees E), additional lichen samples were collected between 1987 and 1998 to study the distribution of Np and Pu in different layers. The concentrations of the two elements follow each other quite well in the profile.  相似文献   

12.
Vertical distributions of 137Cs have been determined in vegetation-soil cores obtained from 30 different locations around two underground nuclear explosion sites--"Crystal" (event year - 1974) and "Kraton-3" (event year - 1978) in the Republic of Sakha (Yakutia), Russia. In 2001-2002, background levels of 137Cs surface contamination densities on control forest plots varied from 0.73 to 0.97 kBq m(-2) with an average of 0.84+/-0.10 kBq m(-2) and a median of 0.82 kBq m(-2). 137Cs ground contamination densities at the "Crystal" site ranged from 1.3 to 64 kBq m(-2); the activity gradually decreased with distance from the borehole. For "Kraton-3", residual surface contamination density of radiocaesium varied drastically from 1.7 to 6900 kBq m(-2); maximal 137Cs depositions were found at a "decontaminated" plot. At all forest plots, radiocaesium activity decreased throughout the whole vertical soil profile. Vertical distributions of 137Cs in soil for the majority of the plots sampled (n=18) can be described using a simple exponential function. Despite the fact that more than 20 years have passed since the main fallout events, more than 80% of the total deposited activity was found in the first 5 cm of the vegetation-soil cores from most of the forested landscapes. The low annual temperatures, clay-rich soil type with neutral pH, and presence of thick lichen-moss carpet are the factors which may hinder 137Cs transport down the soil profile.  相似文献   

13.
Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).  相似文献   

14.
Using radioactivity measurements for 131I and 137Cs and nuclear activation analysis (NAA) or accelerator mass spectrometry (AMS) for 129I, ratios of 131I/137Cs and 129I/137Cs have been determined in soils from Belarus. We find that the pre-Chernobyl ratio of 129I/137Cs in Belarus is significantly larger than expected from nuclear weapons fallout. For the Chernobyl accident, our results support the hypothesis that there was relatively little fractionation of iodine and caesium during migration and deposition of the radioactive cloud. For sites having 137Cs > 300 Bq/kg, 129I can potentially give more reliable retroactive estimates of Chernobyl 131I deposition. However, our results suggest that 137Cs can also give reasonably good (+/-50%) estimates for 131I in Belarus.  相似文献   

15.
The amount and vertical distribution of Chernobyl-derived 137Cs in the bottom sediments of some Finnish lakes were studied. Sediment and surface water samples were taken in 2000 and 2003 from 12 stations in nine lakes and the results were compared with those obtained in corresponding surveys carried out in 1969, 1978, 1988 and 1990. Each of the five deposition categories of Chernobyl fallout in Finland were represented. The depth profiles of 137Cs in the sediments showed considerable variety in the lakes studied. The peak values varied between 1.5 and 46 kBq kg(-1) dry wt. The size and shape of the peak did not always correlate with the amount of deposition in the area, but on the other hand, reflected differences in sedimentation processes in different lakes. In some of the lakes the peak still occurred in the uppermost (0-2 cm) sediment layer, but in an extreme case the peak occurred at a depth of 22-23 cm corresponding to a sedimentation rate of 16 mm year(-1) during the 14 years after the Chernobyl accident. The total amounts of 137Cs in sediments varied from 15 to 170 kBq m(-2) at the sampling stations studied. Since 1990, the amounts have continued to increase slightly in two lakes, but started to decrease in the other lakes. In most of the lakes, the total amounts of 137Cs in sediments were about 1.5-2 times higher than in local deposition. In two lakes, the ratio was below 1, but in one case 3.2. Compared with the total amounts of 137Cs at the same stations in the late 1960s and 1970s, the values were now at their highest, at about 60-fold. The most important factors affecting 137Cs values in sediments were the local amount of deposition and the type of the lake and the sediment, but in addition, there were a number of other factors to be considered.  相似文献   

16.
Immediately after the Chernobyl accident, a soil sampling programme was undertaken in order to detect and quantitatively analyse the long-lived radionuclides in the Chernobyl fallout. Soil samples (1242 in number) of 1 cm thick surface soil were collected in Greece during the period from May-November 1986. The samples were counted and analysed using Ge detector set-ups. The 137Cs fallout data have already been analysed, mapped and published. In an attempt to improve this analysis and also to extent it to other fallout radionuclides, an in-house unix-based data base/geographical information system (DBGIS) was developed. Multifractal analyses of the deposition patterns have also been performed. In the present work, an analysis of the results of the deposition of 137Cs, 134Cs, 144Ce, 141Ce, 125Sb, 110mAg, 106Ru, 103Ru, 95Zr and 54Mn are presented together with relevant fractal analysis and three characteristic contour maps. The maximum detected values of the above-mentioned radionuclides were 149.5 +/- 0.1, 76.1 +/- 0.1, 32.9 +/- 0.2, 46 +/- 2, 4.56 +/- 0.02, 7.98 +/- 0.02, 79.1 +/- 0.4, 337 +/- 2, 20.1 +/- 0.2 and 3.02 +/- 0.02 kBq m-2, respectively. Furthermore, a statistical technique to compare contour maps was introduced and applied to explain the differences which appeared in the maps of the above-mentioned radionuclides.  相似文献   

17.
A field study was carried out in the Mercantour Mountains at 2200 m altitude to investigate the processes of soil enrichment in atmospheric Chernobyl (137)Cs. Soils with high (137)Cs activities have been collected in the pasture areas with frequently measured (137)Cs activity values of the order of 7000 Bq m(-2). At some single spots (about 6% of the studied area), activity in soils reached 300000 Bq m(-2), which represents 44% of the (137)Cs of the total area. Data further showed that spatial distribution of Cs depends widely on its origin: Chernobyl Cs is mainly concentrated in "enriched" soils, whereas older Cs and (241)Am fallout from nuclear weapons tests (NWTs) and natural atmospheric (210)Pb in soils is less heterogeneously distributed.In order to elucidate the processes which have led to the enrichment in Chernobyl (137)Cs in the Alps in May of 1986, we have studied the repartition of atmospheric (7)Be isotope (half-life=53.3 d) in the pasture compartments (soil, litter, grass, and snow). Snow (7)Be data give evidence that fallout enrichment is related to snow accumulation (snow drift). The transfer of beryllium occurs rapidly to the grass and litter, where the strongest pollutant accumulations were measured. However, (7)Be transport to the soil required more than 8 months.  相似文献   

18.
The 137Cs activity of salt marsh and tidal flat sediments of the northern part of the European Wadden Sea was studied based on a comprehensive dataset of 210Pb dated cores. The 137Cs inventory of salt marsh sediments shows a major peak corresponding to the Chernobyl accident in 1986, and a minor peak located in the late 1960s interpreted as the combined effect of atmospheric testing of nuclear weapons. Emissions from the nuclear reprocessing plant Sellafield are not reflected as peaks in 137Cs activity, but may contribute to the rising 137Cs activity in the years prior to 1986. The 137Cs activity of tidal flat sediments differs from salt marsh sediment in two respects. First, the activity is much lower and, second, the major peak in the 1980s is located in the beginning instead of in the middle of the decade. The differences in 137Cs inventory between the two environments are interpreted to result from repeated cycles of deposition/resuspension and mixing on tidal flats. A simple model illustrating the consequence of mixings returns an apparent shift of major peaks in 137Cs activities backwards in time corresponding to the mixing depth divided by the deposition rate.  相似文献   

19.
The role of puddle sediments as a final depot of 137Cs horizontal migration within the urban landscape is studied using the example of Ekaterinburg city, Russia. Radioactive contamination in the city appeared due to fallout after atmospheric testing of nuclear weapons and nuclear accidents. Contamination density of 137Cs in the region was assessed from archive data to be about 5.1 kBq/m2, of which the maximum activity concentration (<30 Bq/kg) is associated with the upper 15 cm soil layer. Results of the survey reported here indicate a mean 137Cs activity concentration in puddle sediments of 80 Bq/kg, with a maximum value of 540 Bq/kg. It is estimated that horizontal migration has led to about a fourfold concentration of 137Cs in puddle sediments.  相似文献   

20.
The radiological status of the Greek marine environment, prior to the Chernobyl accident, was characterized mainly by the fallout from nuclear weapon tests. However, the release of radioactivity into the environment from the accident in the Chernobyl Nuclear Power Plant and its deposition in the Greek marine environment resulted in an increase of the 137Cs activity concentration by approximately one order of magnitude. In addition, the direct transport of radiocaesium into the North Aegean Sea has been further influenced by the late impact of the Chernobyl accident on the Greek marine environment, related to the transfer of 137Cs, mainly through the Dnieper but also the Danube rivers, to the Black Sea and further to the North Aegean Sea through the Straits of Dardanelles. The aim of this work is to provide a present day picture of the geographic variation of the concentration of 137Cs in the surface layer of the Greek marine environment and hence, to evaluate the annual committed effective dose delivered to humans through the ingestion pathway from marine sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号