Chemical treatment of para-nitrochlorobenzene (p-NCB) by palladium/iron (Pd/Fe) bimetallic particles represents one of the latest innovative technologies for the remediation of contaminated soil and groundwater. The amination and dechlorination reaction is believed to take place predominantly on the surface site of the Pd/Fe catalysts. The p-NCB was first transformed to p-chloroaniline (p-CAN) then quickly reduced to aniline. 100% of p-NCB was removed in 30 min when bimetallic Pd/Fe particles with 0.03% Pd at the Pd/Fe mass concentration of 3g 75 ml(-1) were used. The p-NCB removal efficiency and the subsequent dechlorination rate increased with the increase of bulk loading of palladium and Pd/Fe. As expected, p-NCB removal efficiency increased with temperature as well. In particular, the removal efficiency of p-NCB was measured to be 67%, 79%, 80%, 90% and 100% for reaction temperature 20, 25, 30, 35 and 40 degrees C, respectively. Our results show that no other intermediates were generated besides Cl(-), p-CAN and aniline during the catalytic amination and dechlorination of p-NCB. 相似文献
We present a method using gas chromatography (GC) and liquid chromatography (LC) coupled to a mass selective detector to measure concentrations of the fungicide chlorothalonil and several of its metabolites in soil and water. The methods employed solid-phase extraction using a hydrophobic polymeric phase for the isolation of analytes. In lake water, average analyte recoveries ranged from 70% to 110%, with exception of pentachloronitrobenzene that gave low recoveries (23%). The method detection limits were determined to be in the range of 1 and 0.1microg l(-1) for the LC and GC methods, respectively. In soil samples, recoveries ranged from 80% to 95% for 4-hydroxy-2,5,6-trichloroisophthalonitrile (metabolite II) and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene (metabolite III). Limits of detection (LOD) were 0.05 and 0.02microg g(-1), respectively. Chlorothalonil and other metabolites were analyzed by GC giving recoveries ranging from 54% to 130% with LOD of 0.001-0.005microg g(-1). 相似文献
Although homogeneous photo-Fenton system is a very efficient method for organic wastewater treatment, it suffers from costly pH adjustment as well as difficult separation of catalysts from aqueous in practical application. Through cation exchange reaction, hydroxyl-Fe-pillared bentonite (H-Fe-P-B) was successfully prepared as a solid catalyst for UV-Fenton to degrade non-biodegradable azo-dye Orange II. Compared with raw bentonite, the content of iron, interlamellar distance and external surface area of H-Fe-P-B increased remarkably. H-Fe-P-B had good photosensitivity and catalyst reactivity. And the catalytic activity of H-Fe-P-B for H(2)O(2) came from hydroxyl-Fe between sheets rather than Fe(3+) or Fe(2+) in tetrahedral or octahedral sheets of bentonite. In UVA-H(2)O(2) system, H(2)O(2) could destroy the azo bond of excited Orange II molecules but could not effectively mineralize it. After 120 min treatment, 83% discoloration was obtained while only 2% of TOC was removed. When H-Fe-P-B was used as catalyst, a significant degradation of Orange II was observed at the same condition as UVA-H(2)O(2) system. Almost 100% discoloration and more than 60% TOC removal of Orange II could be achieved after 120 min treatment. Because of the strong surface acidity and the electronegativity of H-Fe-P-B, the pH range of this catalyst in the Orange II discoloration could be extended up to 9.5. And this catalyst showed good stability during Orange II degradation in water in wide range of pH (3.0-9.5). These results indicated that the H-Fe-P-B was a promising catalyst for UV-Fenton system. 相似文献
The sonochemical degradation of aqueous solutions containing low concentrations of six phthalate esters at an ultrasonic frequency of 80 kHz has been investigated. Ultrasonic treatment was found capable of removing the four higher molecular mass phthalates (di-n-butyl phthalate, butylbenzyl phthalate, di-(2-ethylhexyl) phthalate and di-n-octyl phthalate) within 30-60 min of irradiation. The rest (dimethyl phthalate and diethyl phthalate) were more recalcitrant and nearly complete removal could be achieved only after prolonged irradiation times. The relative reactivity of phthalates was explained in terms of their hydrophobicity. Experiments were carried out at an overall initial phthalate concentration of 240 microg l(-1), values of electric power of 75 and 150 W, temperatures of 21 and 50 degrees C and in the presence of NaCl to study the effect of various operating conditions on degradation. Solid-phase microextraction (SPME) coupled with GC-MS proved to be a powerful analytical tool to monitor the sonochemical degradation of phthalate esters at low microg l(-1) concentration levels, minimising the risk of secondary contamination during sample preparation, a major parameter to consider during phthalates analysis. The advantages as well as disadvantages of using SPME are also highlighted. 相似文献
Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient Kf,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone. 相似文献
Photodegradation of metsulfuron-methyl, a sulfonylurea herbicide, has been investigated in aqueous solution at different pH and excitation wavelengths. The efficiency of the process has been evaluated through quantum yield determinations. The identification of the photoproducts indicates that the major photochemical pathway is initiated by C-S bond dissociation followed by involvement of water to yield the main final products; the behaviour in water is shown to differ markedly from that in an organic environment. 相似文献
The fate of oxytetracyclines (OTCs) in soil interstitial water was investigated and the structure of a number of degradation products elucidated in a time-related experiment. A previously developed separation method for LC–MS–MS able to base separate and quantify OTC and three of its epimers and degradation products was applied. Compounds detected were 4-epi-oxytetracycline (EOTC) (tR=3.0 min), OTC (tR=4.4 min), -apo-oxytetracycline (-apo-OTC) (tR=11.4 min) and β-apo-oxytetracycline (β-apo-OTC) (tR=18.4 min). Furthermore, we tentatively identified 4-epi-N-desmethyl-oxytetracycline (E-N-DM-OTC) (tR=3.0 min), N-desmethyl-oxytetracycline (N-DM-OTC) (tR=3.5), N-didesmethyl-oxytetracycline (N-DDM-OTC), 4-epi-N-didesmethyl-oxytetracycline (E-N-DDM-OTC) (tR=3.7 and 4.7 min) and 2-acetyl-2-decarboxamido-oxytetracycline (tR=8.7) in all samples. Most compounds were only present in trace concentrations (less than 2%) relative to the parent OTC. EOTC was on the other hand formed up to a ratio of 0.6 relative to parent OTC concentration. Only EOTC, E-N-DM-OTC, N-DM-OTC, N-DDM-OTC and E-N-DDM-OTC were formed during the time-related experiment. All other compounds were probably only present as impurities in the spiked OTC formulation as they declined in concentration from the start of the experiment. Half-lives (T1/2, days) of the OTCs in soil interstitial water were in the order of 2 days (EOTC) to 270 days (β-apo-OTC). 相似文献
The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).
The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium.
Method
Iron?Csilver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique.
Results
The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10?mg?g?1, respectively, as compared to the experimental value of 54.0?mg?g?1 with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set.
Conclusion
Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water. 相似文献