首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于MODIS数据的中国气溶胶光学厚度时空分布特征   总被引:1,自引:0,他引:1  
利用Aqua/MODIS C006大气气溶胶光学厚度(AOD)遥感数据,统计了中国2007—2017年的AOD值,对11年间AOD的空间分布特征及年际和四季变化特征进行分析,并采用Theil-Sen Median趋势分析、标准偏差和Hurst指数3种方法,分析了基于像元的中国大陆地区AOD时空变化特征.结果表明:①空间特征:11年间AOD分布具有东部高、西部低,东部减少、西部基本不变的特征;②时间特征:AOD变化在年际间呈余弦曲线式波动下降的特征,最高值出现在2007年,为0.34,最低值出现在2016年,为0.22,11年间AOD平均值下降了35.29%;年内AOD值表现出春夏高(0.33/0.32),秋季次之(0.26),冬季最小(0.15)的季节变化特征;③稳定性与持续性:东部稳定性差但集聚、西部稳定性好但分散,东西差异显著;中国AOD持续性特征以弱反持续性为主,弱持续和弱反持续镶嵌分布,西北干旱区表现为强反持续性的特点.  相似文献   

2.
张瑞芳  于兴娜 《环境科学》2020,41(2):600-608
利用2001~2018年的Terra MODIS C6.1气溶胶产品对河南省大气气溶胶光学特性进行研究,分析气溶胶光学厚度(AOD)、气溶胶垂直柱质量浓度(AMC)和细粒子比(FMF)的时空分布特征,并针对代表性区域研究了气溶胶光学参数的时间变化特征.结果表明,河南省年均AOD和AMC及其在各个季节的空间分布均为东高西低、北高南低,与河南省特殊地势、人口分布及各地区企业数量有关,而FMF的空间分布与AOD和AMC分布相反.春季AMC值最高,而FMF值最低,表明春季主要是受到沙尘气溶胶的影响.夏季AOD和FMF值最高,而AMC值较低,主要是夏季气溶胶吸湿增长作用增强导致AOD高值出现,雨水冲刷与二次气溶胶生成量增加使夏季以细模态气溶胶为主.秋、冬季河南省AOD和AMC值相对较低,FMF值略高于春季.河南省AOD和AMC呈现逐年下降趋势;而FMF呈现上升趋势,而且2011年之后AOD、AMC和FMF的月平均峰谷差值均有所减少.  相似文献   

3.
中亚五国气溶胶光学厚度时空分布特征研究   总被引:4,自引:1,他引:4  
气溶胶时空变化是影响气溶胶气候效应不确定性的主要因素之一.在生态环境脆弱的中亚五国(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、吉尔吉斯斯坦和塔吉克斯坦)研究气溶胶光学厚度(Aerosol Optical Depth,AOD)的时空变化对中亚地区及全球生态环境和气候变化具有重要意义.基于2002-2019年MODIS 04_...  相似文献   

4.
长三角地区吸收性气溶胶时空分布特征   总被引:2,自引:1,他引:2  
利用2008~2017年OMI/Aura OMAERUV L2气溶胶数据集,研究了近10年长三角地区吸收性气溶胶的时空分布特征.结果表明:①在时间分布上,长三角地区气溶胶光学厚度(AOD)与吸收性气溶胶光学厚度(AAOD)的年际变化趋势一致,均为先升后降,于2011年达最高值,分别为0. 702和0. 056.月际变化显示AAOD高值多发生在1、3和6月,11月到次年1月明显增加.②在空间分布上,长三角地区AAOD呈北高南低分布,AOD与AAOD分布相似,AAOD 0. 05的高值区主要集中在安徽北部、江苏北部以及南京、杭州和金华等地区. AAOD与AOD季节空间分布均为春冬高,秋季较低,但二者不同的是,夏季AOD很大,AAOD却很小.长三角地区AAOD和AOD的年均空间分布与黑碳贡献量一致.  相似文献   

5.
为探究全国大气气溶胶光学厚度(AOD)的分布及变化特征,利用最新的MODIS/Terra C6.1 550 nm AOD月数据分析了2001~2017年全国AOD的时空分布及变化趋势.结果表明,空间特征:年均AOD空间分布呈现两个显著的高值中心和低值中心,第一高值中心位于以人为气溶胶为主的华北平原、华中地区、长三角地区、珠三角地区和四川盆地,第二高值中心位于以尘埃气溶胶为主的塔克拉玛干沙漠地区,两个低值中心分别位于内蒙古地区东部至东北地区北部以及青藏高原.时间特征:各区域AOD峰值主要出现在春、夏季,塔克拉玛干沙漠地区、四川盆地和珠三角地区AOD在3~4月达到峰值,华北平原、华中地区和长三角地区AOD在5~7月达到峰值.趋势特征:2001~2006年,我国西北地区和内蒙古地区AOD呈现减少趋势,我国中东部地区和西南地区东部AOD呈现增长趋势.2007~2012年,青藏高原和塔克拉玛干沙漠地区AOD变化趋势由减少转为增长,华北平原和四川盆地AOD的增幅减弱,长三角地区AOD呈现弱的下降趋势.2013~2017年,我国大部地区AOD呈显著地下降趋势.  相似文献   

6.
气溶胶与气候的相互影响随全球变暖趋势日渐显著,生物质燃烧(Biomass burning,BB)对气候环境的影响同样不容小觑.基于MODIS气溶胶与火点遥感数据和MERRA-2再分析数据,研究了亚洲气溶胶光学厚度(Aerosol optical depth,AOD)、黑碳(Black carbon,BC)、有机碳(Organic carbon,OC)与BB分布变化特征,并分析了亚洲BB与碳质气溶胶的相关性.结果表明:①亚洲AOD高值集中于阿拉伯半岛(春季:0.815,夏季:0.947)、中国中东部和青藏高原南侧,阿拉伯海海域夏季AOD由岸向海降低,青藏高原南侧冬季BC较为突出(6.517μg·m-2),中南半岛OC高值时间上不连续.②亚洲BB多发于印尼群岛(夏、秋两季)、中南半岛(冬、春两季)、青藏高原南侧和俄罗斯部分地区.③中南半岛秋、冬、春三季碳质气溶胶与BB密切关系:柬埔寨秋季西南部出现BB与BC的正相关高值,相关系数为0.602;缅甸、老挝地区冬季为正相关关系区(BC:0.773,OC:0.839);老挝北部春季表现为负相关高值(BC:-0.745,OC:...  相似文献   

7.
安徽及周边地区气溶胶时空特征及成因分析   总被引:4,自引:1,他引:4  
利用AERONET数据对2013年6月—2014年5月Aqua/MOIDS气溶胶产品在安徽及周边地区的适用性进行了验证,分析了气溶胶时空分布特征并讨论其影响因素.结果表明:MODIS AOD与AERONET数据在研究区具有很好的一致性,满足美国国家宇航局(NASA)的误差要求.时间上,安徽北部及中部春季、冬季AOD值较高,合肥-南京一带在冬季AOD值甚至高于0.9;研究区域整体在秋季达到AOD最低值.空间上,皖西、皖南山区和庐山等高海拔地区AOD较低,而处于山区间的沿江平原的AOD却明显升高,形成一个以沿江平原为高值中心的环形分布区.研究区域内AOD与能见度、相对湿度的相关性显著,风速对AOD有着先促进后抑制的影响,经济发展和人口分布对气溶胶的分布也有着明显的影响.  相似文献   

8.
中国近15年气溶胶光学厚度时空分布特征   总被引:1,自引:0,他引:1  
利用MODIS 04_L2气溶胶日产品统计其月度、季度及年度均值数据,研究中国大陆地区近15a气溶胶光学厚度(AOD)空间分布状况;通过Spearman秩相关检验法,探讨中国大陆地区近15a的AOD年均值与季均值的逐年变化趋势.结果表明:在空间分布上,我国AOD多年均值高值中心主要位于四川盆地、南疆盆地、华中地区、长江三角洲、华北平原、关中平原,珠江三角洲地区也有小范围的高值区;低值中心主要位于川西和藏东南、内蒙和冀北交界以及河套地区.在逐年变化趋势上,西北地区AOD值主要呈下降趋势,其中川西和藏东南、陕甘宁交界呈显著下降趋势;东部地区AOD值主要呈现上升趋势,且华中地区、长江三角洲、华北平原以及关中平原呈显著上升趋势;在全国范围内AOD年均值整体呈现上升趋势,但趋势不显著;AOD值随季节变化较显著,具体表现为春夏较高、秋冬较低;AOD高值区以及呈上升趋势的地区基本都处在胡焕庸线东南,表明人类活动对AOD值影响比较显著.  相似文献   

9.
气溶胶光学厚度(Aerosol optical depth, AOD)和气溶胶细模态比例(Fine mode fraction, FMF)是区域大气质量的重要指示因子.利用2003—2020年AOD和FMF粒子谱阈值划分气溶胶类型,综合利用局部自相关、线性趋势估计和地理探测器方法,揭示关中地区不同类型气溶胶的空间变化特征及驱动因素.结果表明:(1)关中地区AOD、FMF及不同类型气溶胶具有空间分异性,AOD和FMF均存在高值聚集和低值聚集,不同类型的气溶胶从中间腹地城市群向外围高地呈“阶梯”状分布.(2)关中地区以混合型(Mixed aerosol, MX)和大陆型气溶胶(Continental background aerosol, CB)为主,城市型气溶胶(Urban aerosol, BU)占比最小.(3)不同类型气溶胶季节、年际变化明显,混合型气溶胶在春、夏季占比高,大陆型气溶胶在秋、冬季占比高,达到50%以上,春、冬季沙尘型气溶胶(Dust aerosol, DD)在城市区聚集明显;在年际变化中,2003—2020年关中地区整体上大气污染程度降低.(4)PM2.5<...  相似文献   

10.
河北省气溶胶标高时空变化及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
以2012年河北省20个监测站的MODIS AOD(气溶胶光学厚度)和近地面水平能见度数据为基础,应用Peterson 模型和高斯模型,计算气溶胶标高月均值年内变化模型系数;应用全微分近似计算原理,构建了气溶胶标高时空变化的成因模型.结果表明:①全省平均气溶胶标高以夏季最高,为3.298 km;春、秋季次之,分别为2.864和2.284 km;冬季最低,为1.597 km. 全省气溶胶标高空间分布以夏季地域差异最显著,最大值为3.193 km;冬季地域差异最小,最大值为1.487 km. ②在全省尺度上,大气颗粒物排放强度和大气边界层高度每变化1%时,将会引致气溶胶标高分别变化0.577%和0.143%,二者对气溶胶标高变化的贡献率分别为80.1%和19.9%;在省内6个次级区域尺度上,大气颗粒物排放强度越大的区域,大气边界层高度对气溶胶标高的贡献率越大,如冀中南平原、沧州沿海平原和冀东平原的贡献率分别达到63.7%、57.8%、54.2%;反之则贡献率较低,如冀中平原、冀西北山区和冀东北山区的贡献率则分别仅为45.4%、32.6%、8.6%.   相似文献   

11.
袁丽梅  马芳芳  卞泽  秦凯 《环境科学》2023,44(11):5964-5974
整合2014~2017年全国PM1监测站点数据,基于时间序列统计方法和空间系统聚类方法揭示了PM1浓度的时空分布特征与演变规律.并结合MODIS遥感卫星气溶胶光学厚度(AOD)数据,分析了PM1-AOD相关性的时空特征.结果显示,2014~2017年中国年均PM1浓度逐年下降,四季PM1浓度呈现“冬高夏低”的变化特征,月均PM1浓度呈“U”型变化特征,在节假日前后PM1浓度呈现“M”型变化特征,在一周中星期一和星期五PM1浓度为高值点,星期日为低值点.基于空间系统聚类法将全国年均PM1浓度分为7类区,全国PM1浓度整体呈现“东高西低,北高南低”的空间分布格局,年均ρ(PM1)值在华中地区最高(54.59μg·m-3),新青藏地区年均最低(11.37μg·m-3).PM1-AOD关系整...  相似文献   

12.
四川盆地地形复杂、气候特殊,是我国颗粒物污染高发地.为探究四川盆地气溶胶分布和周期变化特征,深入认识气溶胶污染特性及其气候效应,结合卫星遥感探测方法,利用2006-2017年MODIS C006 3 km AOD(气溶胶光学厚度)产品,分析了四川盆地AOD的时空特征.结果表明:①MODIS AOD(MODIS数据反演的气溶胶光学厚度)与太阳光度计CE318观测的AOD、ρ(PM2.5)、ρ(PM10)线性相关系数分别为0.78、0.77、0.75,表明MODIS C006 3 km AOD产品适用于四川盆地颗粒物污染研究.②四川盆地AOD平均值范围为0.1~1.3,其中,成都平原和四川盆地东南部地区是AOD高值(AOD值>1.0)中心,四川盆地周边高海拔区AOD均小于0.3.③2006-2017年AOD年均值范围为0~2.5,整体呈"倒N型"曲线下降,其峰值和谷值分别出现在2013年和2017年;2013年AOD大于1.0的区域占四川盆地的34.1%,是12 a中颗粒物污染最重的一年;2017年AOD小于0.3的面积占57.1%.④AOD季节性变化呈春季最大、夏季次之、秋季最小的特征.⑤AOD月变化呈"双峰型"波动特征,AOD月均值范围为0~2.5,其中,2-5月AOD月均值均大于0.7,8月AOD月均值为0.6,11-12月AOD月均值均小于0.5.研究显示,四川盆地颗粒物污染防治应以成都平原城市群和四川省南部城市群为主,应重点控制细颗粒物排放,合理安排工业企业的周期性生产强度.   相似文献   

13.
使用AE-33于2019年8月12日至10月4日观测了黑碳(BC)浓度,结合PM、污染气体和气象要素数据、 HYSPLIT模式、 PSCF和CWT模式,分析了BC的时间演变特征、潜在来源及其主要影响区域.结果表明,ρ(BC)平均值为882 ng·m-3,占PM2.5的质量分数为6.08%.ρ(BC)主要集中在200~1 000 ng·m-3,占总样本数的55.9%.在不同BC浓度范围内,均是以BC液态为主,平均占比为86%. BC和PM2.5浓度的日变化均为单峰型分布,峰值分别位于08:00和10:00,峰值浓度分别增加了24.3%和47.2%.BC固态的日变化为双峰型分布,峰值分别位于08:00和20:00, BC液态的日变化为单峰型分布,峰值位于08:00. BC与NO2的相关性较好,与SO2的相关性较弱,说明BC受交通源的影响较大,受工业源的影响较小.影响鄂尔多斯市的主导气团可分为4类...  相似文献   

14.
秸秆焚烧期的碳黑气溶胶观测及研究   总被引:7,自引:3,他引:7  
2007年5~6月在合肥市郊3个站点连续实时监测碳黑气溶胶,研究其在秸秆焚烧期的变化特征和来源.正常时期碳黑气溶胶平均质量浓度约为4.85 μg/m3,而秸秆焚烧期其平均浓度约为 8.38 μg/m3,这说明秸秆焚烧是碳黑气溶胶的重要来源.同步监测的PM10与BC一致性较好,相关系数为0.74,一般情况下BC约占PM10的4.7%,而秸秆焚烧期BC/PM10的统计平均值较高,约为7.9%.比对2004年秸秆焚烧期BC浓度数据,证实了合肥市在实行农作物秸秆禁烧后,碳黑气溶胶的污染情况有较大好转.  相似文献   

15.
胡俊  亢燕铭  陈勇航  刘鑫  李霞  刘琼 《环境科学》2018,39(8):3563-3570
利用2006~2015年美国NASA地球观测系统(EOS)中分辨成像仪MODIS Level 2 10 km分辨率产品MYD04__L2__C006数据,分析乌鲁木齐市存在轻度以上(包括轻度)大气污染状况下的10年气溶胶光学厚度变化特征.结果表明,乌鲁木齐市10年平均AOD年内呈单峰分布,AOD从1~4月逐渐增大,4月达全年峰值,为0.37±0.19,10月达到最低值,为0.22±0.20;受春季沙尘天气频发影响,AOD季节变化特征表现为春季最大,城区大气污染状况严重,夏季、冬季次之,秋季最小,且乌鲁木齐市区大气污染状况较郊区严重;10年AOD均值为0.293;2006年出现AOD年均最高值为0.33,最低值出现在2008年,为0.24,较2007年单年降幅达23.3%.乌鲁木齐市10年AOD年际变化呈上升趋势,且低值点与高值点较以往研究均有不同程度增幅,虽然2015年出现减弱势头,乌鲁木齐市近10年的大气污染状况仍较严重,仍需加强控制.  相似文献   

16.
陈香月  丁建丽  王敬哲  葛翔宇  梁静 《环境科学》2019,40(11):4824-4832
气溶胶光学厚度(AOD)描述了气溶胶对光的衰减作用,并在一定程度上反映区域大气污染程度.本研究以2000年~2015年长时间序列MOD09A1数据为本底,在生成查找表的基础上,采用深蓝算法(DB)对艾比湖流域2000年~2015年Landsat TM/ETM+/OLI数据进行AOD遥感估算,分析艾比湖流域AOD时空变化特征,结合环境变量选用随机森林模型(RF)对AOD进行预测及因子贡献度排序.结果表明:①艾比湖流域AOD呈现显著的季节性变化特征,AOD值春季(0. 414)夏季(0. 390)秋季(0. 287),其中春季变化幅度最大.②艾比湖流域平均AOD为0. 374,年际变化整体表现为上升趋势,但在2010~2015年间AOD增加较快,年际增幅达到32. 32%,表明该流域近15年间的大气污染不断加剧,近5年尤甚.③艾比湖流域AOD空间分布从艾比湖北部到南部呈阶梯式上升变化,其中,精河县污染最为突显,AOD值达到0. 483.④RF模型对AOD的预测效果较好,R~2=0. 866,RMSE=0. 042,其中蒸散发对艾比湖流域AOD影响最为显著.  相似文献   

17.
气溶胶光学厚度(aerosol optical depth,AOD)是气溶胶最基本的光学特性之一,表征气溶胶对光的消减作用,对区域大气污染有一定的指示作用.首先,以2000 ~ 2019年长时间序列MOD09A1产品数据为基础,利用ASTER波谱数据库,构建了Landsat TM/OLI蓝光波段地表反射率数据集,利用深...  相似文献   

18.
典型排放源黑碳的稳定碳同位素组成研究   总被引:3,自引:9,他引:3  
采集了我国主要的黑碳排放源(生物质燃烧、民用燃煤和机动车尾气)的烟尘样品,分析烟尘中黑碳(BC)和总碳(TC)与原始燃料的稳定碳同位素组成(δ13C),对比各种δ13C值之间的关联性,评估运用δ13C技术进行BC源解析的潜力.结果表明:①3种典型排放源烟尘样品的δ13CBC与燃料有较好的一致性,且不同排放源的δ13CBC变化范围之间有比较明显的差别:生物质燃料除玉米秸(C4植物,δ13CBC为-13.62‰)显著不同外,C3植物的δ13CBC平均值为-26.49‰±1.17‰;烟煤的平均值为-23.46‰±0.37‰;机动车尾气(包括柴油车和汽油车)的平均值为-25.17‰±0.40‰.②各种排放源的BC形成过程存在程度各异的碳同位素分馏,C4植物(玉米秸)燃烧过程分馏作用较明显(BC的δ13C相对燃料负偏1.62‰),而C3植物和民用煤燃烧过程的分馏较小(分别正偏0.63‰和0.52‰).③BC的纯化手段(CTO-375方法)对生物质烟尘的δ13C有一定的影响(BC和TC的δ13C相差约为0.50‰),对化石燃料烟尘没有影响.上述典型排放源的δ13C数据库可为BC源解析提供依据.  相似文献   

19.
北京市黑碳气溶胶浓度特征及其主要影响因素   总被引:3,自引:3,他引:0  
曹阳  安欣欣  刘保献  景宽  王琴  罗霄旭 《环境科学》2021,42(12):5633-5643
为探究北京市黑碳(black carbon,BC)气溶胶时空分布特征及其主要影响因素,对4个站点2019年的ρ(BC)、ρ(PM2.5)、ρ(CO)和φ(NOx)及同期气象因子进行比对分析.结果表明,背景区(BA)、城区(UA)、城区路边(UR)和外环路边(HR)的平均 ρ(BC)分别为(1.58±1.15)、(2.2...  相似文献   

20.
为了研究南京市黑碳(black carbon,BC)气溶胶的时间演变特征及其主要影响因素,使用多波长Aethalometer(AE-33)每个季节选取典型月份观测了BC质量浓度,结合大气污染物数据、气象要素和边界层探测数据,分析了BC的季节变化、日变化、周末效应和来源特征.结果表明,南京的BC浓度具有明显的季节变化,春季[(3 351±919) ng·m-3]>冬季[(3 234±2102) ng·m-3]>秋季[(3 064±967) ng·m-3]>夏季[(2 632±1 705) ng·m-3]. 4个季节BC日变化均为双峰型分布,峰值分别位于06:00~08:00和21:00~23:00. BC不同季节的早晚高峰分布特征不同.早高峰春季BC浓度最高,晚高峰冬季浓度最高.冬季早高峰出现时间要比其他季节滞后2 h,而夏季晚高峰时间反而比其他季节提前2 h.风速对BC日变化季节分布差异的影响远大于相对湿度(relative humidity,RH).逆温层结对大气污染物浓度的影响...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号