首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floating macroalgae are common dispersal vehicles for associated benthic invertebrates. In order to investigate the importance of kelp rafts for species dispersal in the Patagonian Fjord Region (PFR), the abundance and distribution pattern of floating kelps (Macrocystis pyrifera, Durvillaea antarctica) and of the invertebrate fauna associated with M. pyrifera were evaluated during austral spring of 2002–2005, 2008 and 2010. In the southernmost Magellan Region (MR), benthic M. pyrifera were additionally sampled to compare the community structures in both conditions. Floating kelps were abundant throughout the entire PFR, harbouring a diverse and abundant invertebrate fauna. The density of floating kelps increased towards the south. In the MR, a loss of species was observed between benthic and floating condition (e.g. decapods, echinoderms, several peracarid species), but a high diversity of organisms from all major phyla were observed on rafts. Throughout the PFR, the predominant rafting species belonged to the peracarids, molluscs and annelids, but the community composition differed between floating samples from the northern and southern zones of the PFR. Relative abundances of peracarids were higher in northern zones, whereas molluscs and annelids dominated in the southern areas. Species of the peracarid genera Peramphithoe, Gondogeneia, Bircenna and Limnoria were shared between all areas. The results suggest that kelp rafts not only contribute to local population connectivity in the PFR, but could also be an important dispersal vehicle for rafting species along the PFR in north–south direction, crossing the biogeographic boundary around Taitao Peninsula. Furthermore, the MR appears to be an important stepping stone for species dispersal via kelp rafting in the subantarctic region.  相似文献   

2.
We examined the distribution and abundance of organisms on subtidal rocky reefs at nine sites around the Chatham Islands, a remote group 780 km east of southern New Zealand. We sampled five depth strata ranging from 1 to<16 m to identify spatial patterns in the abundance of algae and invertebrates and to assess their variation within and among sites. This information is used to discuss hypotheses concerning community structure at this remote locality. Several patterns were apparent. The immediate subtidal was occupied by the southern bull kelp Durvillaea spp. A suite of 11 fucalean species were dominant to a depth of 10 m with an average abundance of 28 m-2, while one species, Carpophyllum flexuosum, occurred mostly in deeper water. Only two laminarian species of algae were present at the islands. The indigenous Lessonia tholiformis was abundant at 2.5 to 15 m and was not found in deeper water, while the giant kelp Macrocystis pyrifera was abundant at two sites in 12 to 18 m. The commercially valuable abalone Haliotis iris was extremely abundant in shallow water, with an overall mean of 6 m-2 at 5 m. The sea urchin Evechinus chloroticus was common, but reached high densities only in small (<25 m2) patches. The characteristic urchin-dominated zones reported in kelp beds world-wide were not seen. There was considerable site-to-site variation in the occurrence and abundance of individual species. Some differences between sites were associated with shelter from swell (e.g. M. pyrifera was found only in sheltered sites) and physical habitat (e.g. juvenile H. iris were found only beneath boulders inshore), but much of the variation could not be explained by physical or depth-related factors alone. We hypothesize that the differences in these kelp bed assemblages compared to mainland New Zealand are partially due to the high degree of endemism at the Chatham Islands. Local variation cannot be explained by herbivory, and is most likely the result of the various life-history characteristics of the major habitat-forming species, the large brown algae.  相似文献   

3.
Regular observations made over a period of 5 yr in four permanent transects provided data on plant, sea urchin, and fish densities which indicate that two unusually severe winter storms in 1980 (Storm I) and 1983 (Storm II) had different effects on a southern California kelp-forest community. Storm I removed all canopies of the giant kelp Macrocystis pyrifera, but spared most understory kelps, mainly Pterygophora californica. Hence, the previously large accumulation of detached drift kelp, mostly M. pyrifera, disappeared. Denied their preferred diet of drift kelp, the sea urchins Strongylocentrotus franciscanus and S. purpuratus then emerged from shelters to find alternative food. Without effective predators, they consumed most living plants, including the surviving understory kelps. This weakened the important detritus-based food chain, as indicated indirectly by declining abundances of algal turf and fish (Embiotocidae) that eat small animals living in turf. In 1983, Storm II reversed the process by eliminating exposed urchins, while clearing rock surfaces for widespread kelp settlement and growth. By summer 1984, the kelp grew to maturity to form extensive canopies despite elevated water temperatures during summer and fall of 1983. Thus, severe storms may have vastly different effects on community structure, depending on the state of the community before the disturbance.  相似文献   

4.
Many small marine herbivores utilize specific algal hosts, but the ultimate factors that shape host selection are not well understood. For example, the use of particular microhabitats within algal hosts and the functional role of these microhabitats have received little attention, especially in large algae such as kelps. We studied microhabitat use of the herbivorous amphipod Peramphithoe femorata that inhabits nest-like domiciles on the blades of giant kelp Macrocystis pyrifera. The vertical position of nest-bearing blades along the stipe of the algal thallus and the position of the nests within the lateral blades of M. pyrifera were surveyed in two kelp forests in northern-central Chile. Additionally, we conducted laboratory and field experiments to unravel the mechanisms driving the observed distributions. Peramphithoe femorata nests were predominantly built on the distal blade tips in apical sections of the stipes. Within-blade and within-stipe feeding preferences of P. femorata did not explain the amphipod distribution. Amphipods did not consistently select distal over proximal blade sections in habitat choice experiments. Mortality of tethered amphipods without nests was higher at the seafloor than at the sea surface in the field. Nests mitigated mortality of tethered amphipods, especially at the seafloor. Thus, protective microhabitats within thalli of large kelp species can substantially enhance survival of small marine herbivores. Our results suggest that differential survival from predation might be more important than food preferences in determining the microhabitat distribution of these herbivores.  相似文献   

5.
6.
Large quantities of floating macroalgae are traveling in coastal waters of the SE Pacific and in other temperate climate zones. While afloat, these algae are potentially exposed to full solar radiation, including UVA and UVB, which can have profound effects on their physiological and growth performance. Latitudinal variations in UV-radiation (UVR) are hypothesized to affect floating algae differently with higher impacts at low latitudes than at high latitudes. In addition, UVR together with grazing might accelerate the demise of floating kelps. This hypothesis was tested with outdoor laboratory experiments in which sporophytes of the giant kelp Macrocystis pyrifera (L.) C. Agardh were exposed to a combination of different UVR regimes (PAR only, PAR + UV) and grazing at three sites along the Chilean coast (20°S, 30°S, and 40°S). A latitudinal trend in irradiance was detected with increasing values from 40°S to 20°S. Surprisingly, floating M. pyrifera responded with a high acclimation potential within this latitudinal UVR gradient. At 20°S, floating kelps were slightly sensitive to UVR, which was reflected in reduced blade growth. At 30°S, physiological responses were hardly affected by the prevailing irradiance but sporophyte growth and thus persistence mainly depended on the presence or absence of amphipod grazers. At high latitudes, grazing had only minor impacts on algal biomass and blade growth, and kelps thrived well under all tested environmental conditions. Overall, our results reveal that floating M. pyrifera was only slightly affected by UVR and that sporophytes can efficiently acclimate over a latitudinal UVR gradient that spans from 20°S to 40°S. Given this high acclimation potential, we suggest that these (and possibly other) positively buoyant algae are important dispersal agents over a wide range of temperate latitude conditions.  相似文献   

7.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

8.
The relative growth rates of juvenile Macrocystis pyrifera in southern California kelp forests were substantially reduced during the El Niño of 1982–1984. The lower growth rates were correlated with increased temperature and decreased nitrogen availability. Fertilization of juvenile plants with slow-release nitrogen-phosphorus fertilizer increased their growth rates to levels previously observed when temperatures were low and nutrient levels were high. The limitation in growth of M. pyrifera by levels of available nutrients during El Niño was in contrast to the usual limitation of growth by irradiance during non-El Niño years. Thus, there was a shift in the relative importance of factors controlling growth of juvenile M. pyrifera during El Niño.  相似文献   

9.
The mass mortality by disease of a localized population of sea urchins, Strongylocencrotus franciscanus, on the seaward side of a kelp forest was followed by the rapid seaward expansion of 4 species of brown algae, Macrocystis pyrifera, Laminaria dentigera, Pterygophora california, and to a lesser extent, Nereocystis leutkeana. One other brown alga, Cystoseira osmundacea, failed to become established in the newly available area. Competition among M. pyrifera, L. dentigera, P. californica, and N. Leutkeana apparently was severe, and within 1 year after the demise of the sea urchins, M. pyrifera formed a dense, nearly monospecific stand. Experimental removal of M. pyrifera demonstrated that the canopy of these plants limited light penetration to levels below that necessary for the growth and survival of other brown and red algae.  相似文献   

10.
Algal succession within a subtidal forest of the giant kelp Macrocystis pyrifera was studied by following colonization and community development on concrete blocks fastened to the bottom. Sets of blocks were placed in the bed at 3-month intervals. Subsequent algal development on each set was followed for over a year. All macroscopic species attached to the substrata were noted, and the number and lenght of basal branches determined every 1 to 3 months. Colonizing plants fell into 3 categories: rapid-growing ephemerals, and rapid and slow-growing perennials. Ephemerals such as Giffordia (Ectocarpus) mitchellae, Colpomenia peregrina, and diatom films generally produced and initial bloom on the blocks but were gradually replaced by perennials (articulated corallines, Rhodymenia spp., Gigartina spp.) characteristic of the mature kelp community. These stages, rather than representing “ecological” succession, seemed to reflect differences in growth rate and success in interspecific competition for space and light. Colonization on the blocks varied with season, indicating that most species have either a spring-summer or fall-winter period of maximum reproduction. M. pyrifera sporophyte colonization was greatest in spring. During community development, algal diversity (H), number of species (s) and evenness (J) all reached a peak within 100 to 200 days regardless of the time the blocks were started. Diversity and number of species then fell as ephemeral species disappeared. These species were apparently unable to compete with perennials and, once gone, did not recolonize. Evenness remained high.  相似文献   

11.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

12.
We studied the effects of grazing by two species of sea urchins on two species of kelp (Macrocystis pyrifera and Pterygophora californica) in the San Onofre kelp bed in southern California from 1978 through 1981. Both red sea urchins, Strongylocentrotus franciscanus, and white sea urchins, Lytechinus anamesus, were abundant and lived in aggregations. The purple sea urchin (S. purpuratus) was rare at the study site and was not studied. The aggregations of red urchins were either relatively small and stationary (for over 3 yr) or relatively large and motile (advancing at about 2 m mo–1). Both stationary and moving aggregations were observed at the same time, and within 100 m of one another. Stationary aggregations of red urchins probably subsisted mainly on drift kelp and had no effect on kelp recruitment or on adult kelp abundance. In contrast, red sea urchins in large, motile aggregations or fronts ate almost all the macroalgae in their path. The condition of their gonalds indicated that red urchins in fronts were starved relative to red urchins in the small, stationary aggregations. Large, motile aggregations developed after 2 yr of declining kelp abundance (probably due largely to storms). We propose that a scarcity of drift algae for food results in a change in the behavior pattern of the red urchins and thus leads to the formation of large, motile aggregations. The aggregations of white urchins, which occurred along the offshore margin of the kelp bed, were large, but relatively stationary. The white urchins rarely ate adult kelps, but grazed extensively on early developmental stages of kelps and evidently prevented seaward expansion of the bed. The spatial distribution of both types of red urchin aggregations appeared to be unrelated to predation pressure from fishes or lobsters.Please address all requests for reprints to the senior author at his present address.  相似文献   

13.
Brown algal polyphenolic compounds are secondary metabolites whose functions may include protecting plants from pathogens or damage by UV radiation, and deterring feeding by herbivores. We present here the first analysis of spatial variation (at scales from tens of meters to hundreds of kilometers) in concentration of these compounds in two orders of brown algae from the northeastern Pacific Ocean. In kelps (order Laminariales), variation among sites was significant in only 25% of species examined and was consistent within families (high in the Alariaceae and low in the Laminariaceae and Lessoniaceae). In rockweeds (order Fucales, family Fucaceae), site variation was high in three of four species examined. Both the proportion of high polyphenolic kelp species and the magnitude of spatial variation within species from both kelps and rockweeds were much higher than would have been predicted from previous studies in other regions. In one kelp (Laminaria groenlandica), significant differences between sites occurred at scales of only tens of meters. No latitudinal clines were observed. Differences in phenolic concentrations of kelps spanned nearly an order of magnitude in one species, Hedophyllum sessile. Phenolic levels were significantly higher in members of the Fucales than the Laminariales, but showed no significant differences between intertidal and subtidal species. Received: 22 July 1996 / Accepted: 26 October 1998  相似文献   

14.
The effect of bryozoan colonization on inorganic nitrogen acquisition by Agarum fimbriatum Harv. and Macrocystis integrifolia Bory., collected from the west coast of Vancouver Island, British Columbia, Canada, was examined in laboratory experiments during June and July 1992. Pieces of kelp blades that were completely covered on one side by the bryozoans Lichenopora novae-zelandiae Busk or Membranipora membranacea, L., or uncolonized (clean treatment), were used to estimate the rate at which nitrate and ammonium were removed from the surrounding seawater. In addition, the rate of ammonium excretion by bryozoans isolated from their associated kelp was measured and also estimated from the results of the uptake experiments. Values obtained were used to estimate the contribution of ammonium excreted by bryozoans to the total amount of inorganic nitrogen available to the associated kelp. Both bryozoan species reduced the ability of the associated kelp to remove nitrate and ammonium from seawater but provided a source of ammonium to the kelp through excretion. The nitrogen status of colonized and clean kelp disks was determined from the ratio of total particulate carbon to total particulate nitrogen (C:N ratio). The C:N ratios for A. fimbriatum colonized with either L. novae-zelandiae or M. membranacea were similar (C:N=12 to 14), and differences between colonized and clean treatments were not significant. For A. fimbriatum, therefore, the C:N ratio indicates that this species was not nitrogen limited at the time of the present study. In contrast, both colonized and clean disks of M. integrifolia were nitrogen limited, but colonized disks (C:N=19) were significantly less limited by nitrogen than clean disks (C:N=29). Results are discussed in relation to the different environments inhabited by both kelp species and are consistent with the hypothesis that ammonium excreted by bryozoans was an important source of inorganic nitrogen to M. integrifolia, but not to A. fimbriatum, at the time of the study.  相似文献   

15.
The connectivity of fragmented landscapes is a function of the physical distance between suitable habitats and the characteristics of the habitat through which the animal is moving, i.e. the matrix. Experimental manipulations done to explain how spatial arrangement and composition of habitats affects biota remain scarce, particularly in marine systems. Holdfasts of the common kelp, Ecklonia radiata, are discrete units of habitat for small invertebrates (e.g. amphipods, isopods, molluscs, annelids) that can be isolated from other holdfasts by habitat, which may be less suitable (e.g. other species of algae or relatively bare space). We compared assemblages, which colonised defaunated holdfasts in experimentally created small-scale landscapes where patches of habitat (holdfasts) were distant versus close together and which had Sargassum spp. versus relatively bare space in the matrix. We also compared colonisation across matrices of crushed fucoid algae to assess whether the structural or chemical nature of algae in the matrix had the most influence on the colonisation. Assemblages in defaunted holdfasts differed between those that were close to and those that were distant from undisturbed holdfasts, where the matrix was devoid of vegetation. Where Sargassum spp. was present in the matrix, however, this difference disappeared and was possibly due to the chemical, rather than structural, characteristics of the fucoid matrix. The extent to which matrix habitat is a barrier to movement of invertebrates among holdfasts thus depends on not only how extensive it is but what type of habitat it contains. As within terrestrial systems, the nature of the matrix is also likely to be a fundamental component of the connectivity within marine systems.  相似文献   

16.
Most research on biological invasions to date has focused on the population dynamics of very successful and disruptive introduced species; however, additional knowledge of the biology of the native species is essential for understanding interactions between the two and may reveal factors that limit invasion success. The invasive bryozoan Membranipora membranacea interacts with native Electra pilosa on two substrates in northwest Atlantic subtidal habitats: highly dynamic and fast-growing kelps; and smaller, more stable, and slow-growing fucoid algae. We quantified the relative abundance and evaluated encounter outcomes in different seasons of these two bryozoans on kelp and Fucus at four sites in Nova Scotia. We also examined the effects of substrate (kelp, Fucus), temperature (7, 10, 13°C), and food (limited, unlimited) on growth rates of E. pilosa in laboratory experiments and using field manipulations. We compared our findings on factors affecting the growth of E. pilosa to those on M. membranacea obtained in similar and thus directly comparable experiments from a previous study. The proportional abundance of M. membranacea was greater than that of E. pilosa on kelps, but the opposite was observed on Fucus. Competitive standoffs between the two bryozoans were more frequent than expected, with no differences recorded between substrates; most encounters were won by M. membranacea. Growth of E. pilosa was faster on Fucus than kelp, decreased with increasing temperature only on Fucus, and was not affected by food. Growth rate of E. pilosa in all treatments was slower than that previously measured for M. membranacea. Faster growth and strong overgrowth abilities likely interact on kelps to ensure success of the invasive bryozoan. Success can be limited by low space availability, which in turn restricts growth rate, and consequently, colony size, such as on fucoid substrates. The incorporation of alternative contexts into invasion research can reveal factors involved in the resilience of native communities.  相似文献   

17.
Frond growth of Macrocystis pyrifera in the Falkland Islands was monitored in shallow coastal water from December 1985 to March 1987, and at a different site in deeper water from December 1985 to June 1986. Growth rates in the deeper bed were generally higher than those recorded in the coastal zone. At both sites, node initiation and elongation rate fluctuated according to the seasonal pattern of light or water temperature. In the shallow coastal area, nitrate was abundant in the winter and below detection levels during late spring and summer. Correlation analysis suggests that the production of the fronds of the giant kelp in this area was probably inhibited during the summer months by extremely low concentrations of nutrients. Internal nitrogen was exhausted approximately one month after a sharp decline in ambient nitrate concentration, and carbon reserves were formed. In the deeper bed of M. pyrifera, nitrogen was abundant all year round and the production of the fronds reflected the seasonal pattern of light or water temperature. The nitrogen content of the tissue probably did not drop below a level that limited production, and no internal carbon reserves were accumulated.  相似文献   

18.
Through two-choice gustatory experiments, a␣preference hierarchy was established␣for␣the␣herbivorous gastropod Norrisianorrisi Sowerby, with laminarialean kelps preferred over all other seaweeds. Among the kelps, laminae of Macrocystispyrifera were slightly preferred over Egregiamenziesii, and both were strongly preferred over sporophylls of Eiseniaarborea. E.arborea, the least preferred kelp, was consistently chosen over other algae common in the snail's habitat (Halidrysdioica, Dictyotaflabellata, and Pterocladiacapillacea) and over seaweeds believed to be edible and palatable based on their morphology, structure, and secondary chemistry (Endarachnebinghamiae, Mazzaellaflaccida, and Ulvalobata). The morphologies and structural toughness of tested seaweeds varied significantly as did their nutritional (% carbon, % nitrogen, C:N ratio, and % ash) contents and phlorotannin concentrations; however, snails preferred to feed on kelps regardless of nutritional content, toughness or phlorotannin concentration; and among kelps preferred to feed on the least tough species (based on penetrometer measurements), which also were those containing the lowest phlorotannin concentrations. Preference for kelp was not upheld in experiments using agarose thalli to which freeze-dried powder, of either the kelp Eiseniaarborea or non-kelp Endarachnebinghamiae was added, suggesting the destruction of attractant chemicals during the making of the artificial foods. Our data suggest that the preference of N. norrisi for kelps over other potentially edible and palatable seaweeds may not be related to nutritional content, but instead may have evolved in response to factors such as availability, habitat provision, or refuge from predation. Received: 27 September 1996 / Accepted: 7 October 1997  相似文献   

19.
The northern distribution limit of giant kelp, Macrocystis pyrifera (Agardh), along the Pacific coast of North America is relatively stable near Point Año Nuevo, California, but its southern limit has varied over hundreds of kilometers along the Baja California peninsula during the past 20 years. The factors that drive this variability in the southern limit were examined by: (1) quantifying the abundances of M. pyrifera and the subsurface stipitate kelp, Eisenia arborea (Areschoug), near M. pyriferas then southern limit at Punta San Roque (27°15N; 114°42W) on ten occasions between August 1997 and June 2002 (prior to and following the 1997/1998 El Niño Southern Oscillation); (2) initiating a field manipulation at Punta San Roque in June 2000 to examine competition between these two kelp species; and (3) surveying 20 additional sites near Punta San Hipólito (27°01N; 114°00W) in June 2002 to determine whether M. pyrifera populations had recovered to their pre-1982/1983 El Niño southern range limit after ~20 years of absence. These observations and the experimental results suggest that M. pyrifera is removed from its southern limit by the high temperatures and large waves associated with El Niños, while E. arborea is able to survive and recruit in high densities and thereby delay or even prevent M. pyriferas recovery. An inverse relationship was observed between these two species over the 5-year study. The field experiment showed that at both 4 months and 1 year after areas occupied by E. arborea were cleared, substantial recruitment of M. pyrifera occurred, while recruitment was negligible in uncleared areas. This study suggests that the southern range limit of M. pyrifera is determined by increased mortality and recruitment failure following the warm temperatures and low nutrient conditions associated with El Niños, limited substrate availability, and by competition with the more persistent populations of E. arborea.Communicated by J.P. Grassle, New Brunswick  相似文献   

20.
The blacksmith Chromis punctipinnis, an abundant planktivorous damselfish off southern California, USA, shelters along rocky reefs at night. While sheltered, blacksmiths excrete ammonium that could, in turn, be utilized by nearby benthic macrophytes. Laboratory experiments during the summer and fall of 1983 and 1984 indicate that ammonium excretion at night ranged from 18.1 mol h-1 by a 8.5 g (dry) fish, to 89.1 mol h-1 by a 27.3 g fish; excretion rates generally declined throughout the night. Field measurements at night indicate that ammonium concentrations were significantly higher in rocky crevices occupied by blacksmiths than in unoccupied shelters, and the ammonium level in one shelter dropped after a blacksmith was experimentally removed. Young kelp plants (Macrocystis pyrifera) are capable of taking up ammonium at night. Ammonium levels in chambers containing both a blacksmith and a young kelp plant were significantly lower than in chambers containing only a fish, and ammonium levels dropped in ammoniumspiked chambers that contained kelp plants. Nighttime ammonium uptake rates by young kelp plants, which averaged 1.6 mol g-1 (dry) h-1, were only slightly lower than those during the day. Daytime excretion by blacksmiths occasionally results in elevated ammonium levels in the water column. On two of six days, ammonium concentrations in midwater foraging aggregations were slightly but significantly higher than in upcurrent controls; since blacksmiths typically aggregate at the incurrent margin of kelp beds, the ammonium is swept downcurrent and may be utilized by large M. pyrifera that extend through the water column. Thus, the activities of blacksmiths may results in the importation of extrinsic, inorganic nitrogen to primary producers on temperate reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号