首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, rice husks considered to be agricultural waste are converted into an adsorbent intended for use in the disposal of oil spills. The raw and refined (defiberized) husks of Japanese Akita Komachi rice were pyrolyzed in a vacuum (500 Pa) at 300-800 degrees C. The amount of A-heavy and B-heavy oils adsorbed on the carbonized rice husk were then evaluated. Oil adsorption is dependent on the type of oil. Rice husks refined and then pyrolyzed at 600-700 degrees C (1.0 g) adsorbed >6.0 g of B-heavy oil and <1.5 g of water, which indicates their usefulness as an adsorbent for oil spill cleanup in Japan. The refining process contributes to an improvement in the oil adsorption capacity, while the carbonization time (at 600 degrees C) has only a minor influence. The residual fluid components in the carbonized rice husks, rather than their porosity, are closely related to oil adsorption capacity.  相似文献   

2.
The objective of this study is to investigate the utilization potential of several organic residues in clay bricks. Sawdust, tobacco residues, and grass are widespread by-products of industrial and agricultural processes in Turkey. These residue materials have long cellulose fibres. Sawdust and tobacco residues generally are used as fuel, and the grass is utilized for agricultural purposes. The insulation capacity of brick increases with the increasing porosity of the clay body. Combustible, organic types of pore-forming additives are most frequently used for this purpose. For this reason, increasing amounts of organic residues (0%, 2.5%, 5% and 10% in wt.) were mixed with raw brick-clay. All samples were fired at 900 degrees C. Effects on shaping, plasticity, density, and mechanical properties were investigated. The organic residue additions were found to be effective for pore-forming in the clay body with the clay maintaining acceptable mechanical properties. It was observed that the fibrous nature of the residues did not create extrusion problems. However, higher residue addition required a higher water content to ensure the right plasticity. As a result, sawdust, tobacco residues, and grass can be utilized in an environmentally safe way as organic pore-forming agents in brick-clay.  相似文献   

3.
In this paper, a mechanical filtering system to treat pig slurry is proposed. The filter was made from the aerobic decomposition product of the organic fraction of municipal wastes and wheat straw was used as the support.Using a pilot plant to treat 2100 liters of swine slurry, an adequate reduction in BOD5; COD, and other parameters was obtained. The organic matter content of the material trapped in the filter was similar to that of compost and farmyard manure, but the nitrogen and phosphorous levels and the C/N ratio were more similar to farmyard manure. After passing through a filtering system, the treated liquid can be used for fertirrigation and as a feed for algae ponds. After a period of stabilization, the solid material can be mixed to produce manure. Although wheat straw was used as the support in this experiment, other agricultural wastes such as rice straw, corn stalks, millet stems, banana, cotton, and coconut trash can be used. Rather than municipal solid waste compost, other kinds of compost obtained from agricultural wastes such as leaves, bark, husks, etc., can be used as the filter.  相似文献   

4.
Rice hulls and sawdust are two common C-rich wastes derived from rice and timber agro-industries in subtropical NE Argentina. An alternative to the current management of these wastes (from bedding to uncontrolled burning) is composting. However, given their C-rich nature and high C/N ratio, adequate composting requires mixing with a N-rich waste, such as poultry manure. The effect of different proportions of poultry manure, rice hulls and/or sawdust on composting efficiency and final compost quality was studied. Five piles were prepared with a 2:1 and 1:1 ratio of sawdust or rice hulls to poultry manure, and 1:1:1 of all three materials (V/V). Different indicators of compost stability and quality were measured. Thermophilic phase was shorter for piles with rice hulls than for piles with sawdust (60 days vs. 105 days). Time required for stability was similar for both C-rich wastes (about 180 days). Characteristics of final composts were: pH 5.8–7.2, electrical conductivity 2.5–3.3 mS/cm, organic C 20–26%, total N 2.2–2.9%, lignin 19–22%, total Ca 18–24 g/kg, and extractable P 6–8 g/kg, the latter representing 60% of total P. Nitrogen conservation was high in all piles, especially in the one containing both C-rich wastes. Piles with sawdust were characterized by high total and available N, while piles with only rice hulls had higher Si, K and pH. Extractable P was higher in 1:1 piles, and organic C in 2:1 piles.  相似文献   

5.
This study aims to assess the composting process of sawdust, wheat-straw and chicken manure and to define the best blend proportion as a function of organic matter loss. Chicken manure, sawdust, and wheat-straw were mixed at different ratios and composted in reactors. The obtained outcomes revealed that the optimum mixture ratio was found in a mixture of 60 % chicken manure, 30 % sawdust, and 10 % wheat-straw. Three kinetic parameters were used in the models including daily process average temperature, area characterized by temperatures under the process temperature curve, and area characterized by temperatures between the ambient and process temperature (ALAT) as an alternative of process temperature. In addition to these statistical values, modelling efficiency was defined. Statistical analyses revealed that all the evaluated models were found suitable for this study; however, when ALAT was used as a function of temperature, the predictability level of all the models improved.  相似文献   

6.
In this paper, a new effective recycling method for rice husks and waste expanded polystyrene is developed by using a combination of both wastes. A styrene solution of waste expanded polystyrene is used as a binder for rice husks-plastics composites. The composites are prepared with various mix proportions by a hot press molding method, and tested for apparent density, water absorption, expansion in thickness, and dry and wet flexural strengths. From the test results, the apparent density of the composites is increased with increasing binder content and filler-binder ratio. Their flexural strength and wet flexural strengths reach maximums at a binder content of 30.0% and a filler-binder ratio of 1.0. Their water absorption and expansion in thickness are decreased with increasing binder content and filler-binder ratio. Since the composites have a high flexural strength and water resistance, their uses as building materials are expected.  相似文献   

7.
Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the characteristics of liquid product on the pyrolysis of plastic mixtures were strongly influenced by lapse time of reaction and degradation temperature.  相似文献   

8.
The present study aimed to develop a mathematical model of composting which, while not overlooking the fundamental principles of physical and microbiological chemistry, could be easily applied in practice and be validated by experimental data. The experimental results of the biological aerobic decomposition of a mixture consisting of rice and rice husks, could be explained in terms of the parameter aggregation model, assuming a set of pseudo-first-order reactions in series, in which a hydrolysis step is followed by a biochemical oxidative step with formation of compost, biomass and biological gases (CO2, O2). The corresponding kinetic parameters and their temperature dependence were determined. These parameters indicated that the hydrolysis step was always the slowest one, and, therefore, the overall rate-determining step. This is in substantial agreement with our experimental observations of a non-dependency of the overall rate on the oxygen concentration, and suggests that rather than using mesophilic and thermophilic bacteria and fungi for seeding or accelerating the process, adequate hydrolytic enzymes (or related micro-organisms) should be added, instead.  相似文献   

9.
Development of a cheap system for reuse of glycerol by-product discharged from the biodiesel fuel (BDF) production process is needed in parallel with development of a low-cost BDF production system. In this article, optimization of compost fermentation of glycerol by-product was studied. The type and amount of additive nitrogen source was studied, and good utilization of glycerol was observed when 0.5 g of urea was added to a mixture of 625 g dry sawdust, 25 g of microbial seed, and 50 g of glycerol by-product. To achieve efficient compost fermentation, repeated batch fermentation was applied and five batch cultures were repeated. Although the pH level and nitrogen and water contents were maintained at suitable levels for microbial growth, the glycerol consumption rate gradually decreased with accumulation of oily compounds in the compost. Finally, a material cost evaluation of the compost fermentation proposed in this study was performed. The total material cost decreased to ¥0.57 /l of BDF when employing an existing compost system for the fermentation process, although sawdust used for mushroom cultivation was used in this study at the very high cost of ¥123 /kg dry sawdust. However, the cost of disposal of the glycerol byproduct as an industrial waste was ¥5.2 /l of BDF produced; therefore, there might be an economical advantage to compost fermentation of glycerol by-product from BDF production.  相似文献   

10.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

11.
In a urine diversion dry toilet (UDDT), the urine and faeces are collected separately in order to recycle their nutrient content unmixed. In a UDDT, an additive e.g. lime, wood ash, dry soil or sawdust, depending on which one is easily accessed by the users, is usually sprinkled to the faeces after each defecation. The purpose of the additive is primarily to keep away the flies and odours and to contribute to primary treatment of the faeces. In this paper, ash and sawdust were applied separately to source-separated faeces during the collection phase, and then the die-off of indicators and pathogens in the mixtures was studied. The die-off of E. coli in the faeces/ash mixture was faster initially (first 7 days) compared to that achieved in the faeces/sawdust mixture even though the die-off achieved after 30–50 days was nearly similar for both mixtures. E. coli was not detected in faeces/ash after about 2 months, but was detected after 2 months in the faeces/sawdust mixture. Enterococcus spp. did not decrease below detection in faeces/ash or faeces/sawdust mixture but higher numbers (difference of about 2 logs) were detected at all times in faeces/sawdust than in faeces/ash mixture. The difference in the die-off in the mixtures of faeces/ash and faeces/sawdust was attributed to the differences in the characteristics of the additives, namely, high alkaline mineral content (giving high pH) and lower moisture content of ash compared to sawdust. It is recommended to increase use of ash as additive over sawdust in urine diversion dry toilets.  相似文献   

12.
Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000 °C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation.  相似文献   

13.
Torrefaction is thermo-chemical process which can improve solid fuel quality as well as grindability. In previous studies, torrefaction has been studied mainly for removal of moisture and for improving grindability. In this experiment, the characteristics of torrefied waste sawdust were studied especially for its energy yield. Hence, torrefaction was performed on varying reaction temperatures (200, 220, 240, 260, 280, 300 °C) and solid residence time (10, 30, 60 min). The results indicated that the yield of torrefaction decreases with increasing temperature and residence time. It was found that above 280 °C, the yield got remarkably decreased. The lowest yield was obtained at the residence time of 60 min. It was also noticed that the HHV of torrefied samples increases with increasing temperature. The highest HHV was found to be 26.09 MJ/kg which was obtained at 60 min and 300 °C. However, the highest energy yield was obtained to be 104.17 % which was noticed at 30 min and 260 °C.  相似文献   

14.
Previous research in our laboratory reported a convenient laboratory-scale composting test method to study the weight loss of polymer films in aerobic thermophilic (53°C) reactors maintained at a 60% moisture content. The laboratory-scale compost reactors contained the following synthetic compost mixture (percentage on dry-weight basis): tree leaves (45.0), shredded paper (16.5), food (6.7), meat (5.8), cow manure (17.5), sawdust (1.9), aluminum and steel shavings (2.4), glass beads (1.3), urea (1.9), and a compost seed (1.0) which is designated Mix-1 in this work. To simplify the laboratory-scale compost weight loss test method and better understand how compost mixture compositions and environmental parameters affect the rate of plastic degradation, a systematic variation of the synthetic mixture composition as well as the moisture content was carried out. Cellulose acetate (CA) with a degree of substitution (DS) value of 1.7 and cellophane films were chosen as test polymer substrates for this work. The extent of CA DS-1.7 and cellophane weight loss as a function of the exposure time remained unchanged when the metal and glass components of the mixture were excluded in Mix-2. Further study showed that large variations in the mixture composition such as the replacement of tree leaves, food, meat, and sawdust with steam-exploded wood and alfalfa (forming Mix-C) could be made with little or no change in the time dependence of CA DS-1.7 film weight loss. In contrast, substituting tree leaves, food, meat, cow manure, and sawdust with steam-exploded wood in combination with either Rabbit Choice (Mix-D) or starch and urea (Mix-E) resulted in a significant time increase (from 7 to 12 days) for the complete disappearance of CA DS-1.7 films. Interestingly, in this work no direct correlation was observed between the C/N ratio (which ranged from 13.9 to 61.4) and the CA DS-1.7 film weight loss. Decreasing moisture contents of the compost Mix-2 from 60 and 50 and 40% resulted in dramatic changes in polymer degradation such that CA DS-1.7 showed an increase in the time period for a complete disappearance of polymer films from 6 to 16 and 30 days, respectively.Guest Editor: Dr. Graham Swift, Rohm & Haas.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

15.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

16.
Sawdust has been proven to be a good bulking agent for sludge composting; however, studies on the most suitable ratio of sludge:sawdust for sludge composting and on the influence of the sludge nature (aerobic or anaerobic) on the composting reaction rate are scarce. In this study two different sewage sludges (aerobic, AS, and anaerobic, ANS) were composted with wood sawdust (WS) as bulking agent at two different ratios (1:1 and 1:3 sludge:sawdust, v:v). Aerobic sludge piles showed significantly higher microbial activity than those of anaerobic sludge, organic matter mineralization rates being higher in the AS mixtures. The lowest thermophilic temperatures during composting were registered when the anaerobic sludge was mixed with sawdust at 1:1 ratio, suggesting the presence of substances toxic to microorganisms. This mixture also showed the lowest decreases of ammonium during composting. All this matched with the inhibitory effect on the germination of Lepidium sativum seeds of this mixture at the first stages of composting, and with its low values of microbial basal respiration. However, the ANS+WS 1:3 compost developed in a suitable way; the higher proportion of bulking agent in this mixture appeared to have a diluting effect on these toxic compounds. Both the proportions assayed allowed composting to develop adequately in the case of the aerobic sludge mixture, yielding suitable composts for agricultural use. However, the ratio 1:1 seems more suitable because it is more economical than the 1:3 ratio and has a lower dilution effect on the nutritional components of the composts. In the case of the anaerobic sludge with its high electrical conductivity and ammonium content, and likely presence of other toxic and phytotoxic substances, the 1:3 ratio is to be recommended because of the dilution effect.  相似文献   

17.
In many rural contexts of the developing world, agricultural residues and the organic fraction of waste are often burned in open-air to clear the lands or just to dispose them. This is a common practice which generates uncontrolled emissions, while wasting a potential energy resource. This is the case of rice husk in the Logone Valley (Chad/Cameroon). In such a context household energy supply is a further critical issue. Modern liquid fuel use is limited and traditional solid fuels (mainly wood) are used for daily cooking in rudimentary devices like 3-stone fires, resulting in low efficiency fuel use, huge health impacts, increasing exploitation stress for the local natural resources. Rice husk may be an alternative fuel to wood for household energy supply. In order to recover such a biomass, the authors are testing a proper stove with an original design. Its lay-out (featuring a metal-net basket to contain the fuel and a chimney to force a natural air draft) allows a mix of combustion/gasification of the biomass occurring in a completely burning fire, appropriate for cooking tasks. According to results obtained with rigorous test protocols (Water Boiling Test), different lay-outs have been designed to improve the performance of the stove. Technical and economic issues have been addressed in the development of such a model; building materials have been chosen in order to guarantee a cost as low as possible, using locally available items. The feasibility of the introduction of the stove in the studied context was assessed through an economic model that keeps into account not only the technology and fuel costs, but also the energy performance. According to the model, the threshold for the trade-off of the stove is the use of rice husk to cover 10–15% of the household energy needs both with traditional fireplaces or with improved efficiency cookstoves. The use of the technology proposed in combination with improved woodstove would provide householders with an appropriate and convenient cooking technology portfolio, increasing the opportunities of choice of the preferred energy system for the user and allowing significant savings for the family budget (up to 50% of the total annual cooking energy expenditure). The proposed model may be used also as a tool for the evaluation of the affordability or for the comparison of different cooking technologies also in other similar contexts, given their specific techno-economic parameter values.  相似文献   

18.
In the present study the interactions between the main constituents of the refuse derived fuel (plastics, paper, and wood) during pyrolysis were studied. Binary mixtures of polyethylene-paper and polyethylene/sawdust have been transformed into pellets and pyrolyzed. Various mixtures with different composition were analyzed and pyrolysis products (tar, gas, and char) were collected. The mixtures of wood/PE and paper/PE have a different behavior. The wood/PE mixtures showed a much reduced interaction of the various compounds because the yields of pyrolysis products of the mixture can be predicted as linear combination of those of the pure components. On the contrary, a strong char yield increase was found at a low heating rate for paper/PE mixtures. In order to explain the results, the ability of wood and paper char to adsorb and convert the products of PE pyrolysis into was studied. Adsorption and desorption tests were performed on the char obtained by paper and wood by using n-hexadecane as a model compound for the heavy products of PE pyrolysis.  相似文献   

19.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

20.
In the present work, selected agroindustrial solid residues from Brazil – biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk – were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJ kg?1 to 29.14 MJ kg?1, on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号