首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We performed a quantitative assessment of the impact of impingement at power plants on the Hudson River white perch population We estimated that impingement reduces the abundance of each white perch year class by at least 10% and probably by 15–20% or more after 2–3 years of vulnerability to power plants We attempted to detect effects of impingement on average year-class abundance of white perch from a time series of abundance indices derived from impingement data We found, however, that neither impingement collection rates observed at Hudson River power plants nor beach seine data provide a reliable index of year-class strength in white perch. Even if a reliable index were developed, natural fluctuations in year-class strength are great enough that a short-term monitoring program would be inadequate for detecting even a large reduction in average year-class strength. We performed a multipopulation analysis using simple food chain and food web models The results suggest that any long-term decline in white perch abundance caused by impingement should be accompanied by an increase in the abundance of one or more competing fish species and by an increase in the biomass of adult white perch relative to young-of-the-year.We conclude that 1) at present, assessments of population-level impact of impingement should focus on short-term effects, 2) research is needed to develop a reliable index of year-class strength for use in long-term monitoring programs, 3) identification and quantification of natural environmental factors influencing year-class strength are needed to improve our ability to predict and detect changes in abundance, and 4) it would be useful in designing monitoring programs to focus on detecting patterns of change among populations and age groups rather than solely on declines in abundance of individual populationsResearch sponsored by the Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission under Interagency Agreement No. 40-550-75 with the US Department of Energy under Contract W-7405-eng-26 with Union Carbide Corporation. Publication No. 2030, Environmental Sciences Division, ORNL.  相似文献   

2.
We developed a stochastic hourly stream temperature model (SHSTM) to estimate probability of exceeding given threshold temperature (T) for specified durations (24 and 96 h) to assess potential impacts on freshwater mussels in the upper Tar River, North Carolina. Simulated daily mean stream T from climate change (CC) and land‐use (LU) change simulations for 2021‐2030 and 2051‐2060 were used as input to the SHSTM. Stream T observations in 2010 revealed only two sites with T above 30°C for >24 h and Ts were never >31°C for more than 24 h at any site. The SHSTM suggests that the probability, P, that T will exceed 32°C for at least 96 h in a given year increased from P = 0, in the 20th Century, to P = 0.05 in 2021‐2030 and to P = 0.14 in 2051‐2060. The SHSTM indicated that CC had greater effects on P for 24 and 96 h durations than LU change. Increased P occurred primarily in higher order stream segments in the downstream reaches of the basin. The SHSTM indicated that hourly stream T responded to LU change on the daily scale and did not affect stream T for durations >24 h. The SHSTM indicated that known thermal thresholds for freshwater mussels could be exceeded within the next 50 years in many parts of the upper Tar River basin in North Carolina, which could have negative consequences on the recruitment of freshwater mussels.  相似文献   

3.
This paper presents a dynamic temperature model for a proton exchange membrane fuel cell (PEMFC) system. The proposed model overcomes the complexity of conventional models using first-order expressions consisting of load current and ambient temperature. The proposed model also incorporates a PEMFC cooling system, which depends upon the temperature difference between events. A dynamic algorithm is developed to detect load changing events and calculate instantaneous PEMFC temperature variations. The parameters of the model are extracted by employing the lightning search algorithm (LSA). The temperature characteristics of the NEXA 1.2 kW PEMFC system are experimentally studied to validate model performance. The results show that the proposed model output and the temperature data obtained from experiments for linear and abrupt changes in PEMFC load current are in agreement. The root-mean-square error between the model output and experimental results is less than 0.9. Moreover, the proposed model outperforms the conventional models and provides advantages such as simplicity and adaptability for low and high sampling data rates of input variables, namely, load current and ambient temperature. The model is not only helpful for simulations but also suitable for dynamic real-time controllers and emulators.  相似文献   

4.
There is a lack of information on urban heat island impact on the thermal environment due to low populated urban sprawl, although densely populated urban sprawl impact has been identified by several researchers. The Takamatsu area has recently developed in a low populated urban sprawl style without any increase in population. This paper examined the impact of a low populated urban sprawl on the thermal environment through an analysis of the last 30 years data set and investigated the contribution of vegetation fraction and population density to the temperature trend. As a consequence, it was shown that one of the most significant causative factors of temperature increase is an expansion of non-vegetated area even without population growth. This result implied that vegetated zones should be maintained in urban areas in order to realize sustainable urbanization.  相似文献   

5.
Chemical-looping combustion (CLC) has been suggested as an energy efficient method for the capture of carbon dioxide from combustion. Thermodynamics and kinetics of CaSO4 reduction with coal via gasification intermediate in a CLC process were discussed in the paper, with respect to the CO2 generating efficiency, the environmental factor and the surface morphology of oxygen carrier. Tests on the combined process of coal gasification and CaSO4 reduction with coal syngas were conducted in a batch fluidized bed reactor at different reaction temperatures and with different gasification intermediates. The products were characterized by gas chromatograph, gas analyzers and scanning electron microscope. And the results showed that an increase in the reaction temperature aggravated the SO2 emission. The CO2 generating efficiency also increased with the temperature, but it decreased when the temperature exceeded 950 °C due to the sintering of oxygen carrier particles. The use of CO2 as gasification intermediate in the fuel reactor had a positive effect on the sintering-resistant of oxygen carrier particles. However, increasing the steam/CO2 ratio in gasification intermediate evidently enhanced CO2 generating efficiency and reduced SO2 environmental impact.  相似文献   

6.
Aqueous degradation rates, which include hydrolysis and epimerization, for chlortetracycline (CTC), oxytetracycline (OTC), tetracycline (TET), lincomycin (LNC), sulfachlorpyridazine (SCP), sulfadimethoxine (SDM), sulfathiazole (STZ), trimethoprim (TRM), and tylosin A (TYL) were studied as a function of ionic strength (0.0015, 0.050, or 0.084 mg/L as Na(2)HPO(4)), temperature (7, 22, and 35 degrees C), and pH (2, 5, 7, 9, and 11). Multiple linear regression revealed that ionic strength did not significantly affect (alpha = 0.05) degradation rates for all compounds, but temperature and pH affected rates for CTC, OTC, and TET significantly (alpha = 0.05). Degradation also was observed for TYL at pH 2 and 11. No significant degradation was observed for LNC, SCP, SDM, STZ, TRM, and TYL (pH 5, 7, and 9) under study conditions. Pseudo first-order rate constants, half-lives, and Arrhenius coefficients were calculated where appropriate. In general, hydrolysis rates for CTC, OTC, and TET increased as pH and temperature increased following Arrhenius relationships. Known degradation products were used to confirm that degradation had occurred, but these products were not quantified. Half-lives ranged from less than 6 h up to 9.7 wk for the tetracyclines and for TYL (pH 2 and 11), but no degradation of LIN, the sulfonamides, or TRM was observed during the study period. These results indicate that tetracyclines and TYL at pH 2 and 11 are prone to pH-mediated transformation and hydrolysis in some cases, but not the sulfonamides, LIN nor TRM are inclined to degrade under study conditions. This indicates that with the exception of CTC, OTC, and TET, pH-mediated reactions such as hydrolysis and epimerization are not likely removal mechanisms in surface water, anaerobic swine lagoons, wastewater, and ground water.  相似文献   

7.
Managers of wilderness resources must maintain, preserve, and sometimes restore pristine ecosystems while providing for public use and enjoyment of these areas. These managers require a resource information system that can store, retrieve and integrate basic data, synthesize components to solve particular problems, and provide simulations and predictions of natural processes and management actions. Traditional information systems based on land classification and type-mapping do not provide these capabilities.Gradient modeling, a new approach to resource management and forest fire simulation, has been developed to meet these needs in Glacier National Park. The method links four major components: (1) a terrestrial site inventory coded from aerial photographs that offers 10-m resolution; (2) gradient models of vegetation and fuel that derive quantitative stand compositional data from the parameters stored in the coded inventory; (3) a fuel moisture and microclimate model that extrapolates basestation weather data to remote sites using the parameters stored in the inventory; and (4) fire behavior and fire ecology models that integrate the data from the inventory and models to calculate real-time fire behavior and ecological succession following a fire.  相似文献   

8.
Selecting a material for biogas storage membranes is becoming increasingly vital because of the wide applications of biogas storage membranes in biogas plants. Material selection has numerous influencing factors, including gas permeability, strength, density, and so on. Among these, gas permeability has a vital role in biogas storage membranes. In this study, three kinds of biogas storage membranes with the same thickness were selected to investigate the effects of temperature (10, 20, 30, and 40°C) and relative humidity (RH; 0%, 50%, and 100%) on the permeability rate of biogas storage membranes. Results demonstrated that when various membrane samples with the same RH values were tested, temperature exhibited a strong effect on permeability rate. Kinetic analysis showed that the relationship between permeability and temperature agrees with the Arrhenius equation. However, no remarkable variation in methane permeability was observed for membranes with the same temperature but different RH values, thus suggesting that RH nearly has no obvious direct influence on the permeability rate of membranes.  相似文献   

9.
We estimated the effects of a temperature control device (TCD) on a suite of thermodynamic and limnological attributes for a large storage reservoir, Shasta Lake, in northern California. Shasta Dam was constructed in 1945 with a fixed-elevation penstock. The TCD was installed in 1997 to improve downstream temperatures for endangered salmonids by releasing epilimnetic waters in the winter/spring and hypolimnetic waters in the summer/fall. We calibrated a two-dimensional hydrodynamic reservoir water quality model, CE-QUAL-W2, and applied a structured design-of-experiment simulation procedure to predict the principal limnological effects of the TCD under a variety of environmental scenarios. Calibration goodness-of-fit ranged from good to poor depending on the constituent simulated, with an R 2 of 0.9 for water temperature but 0.3 for phytoplankton. Although the chemical and thermal characteristics of the discharge changed markedly, the reservoir's characteristics remained relatively unchanged. Simulations showed the TCD causing an earlier onset and shorter duration of summer stratification, but no dramatic affect on Shasta's nutrient composition. Peak in-reservoir phytoplankton production may begin earlier and be stronger in the fall with the TCD, while outfall phytoplankton concentrations may be much greater in the spring. Many model predictions differed from our a priori expectations that had been shaped by an intensive, but limited-duration, data collection effort. Hydrologic and meteorological variables, most notably reservoir carryover storage at the beginning of the calendar year, influenced model predictions much more strongly than the TCD. Model results indicate that greater control over reservoir limnology and release quality may be gained by carefully managing reservoir volume through the year than with the TCD alone. RID=" ID=" Author to whom correspondence should be addressed. e-mail: John_Bartholow@USGS.gov  相似文献   

10.
In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).  相似文献   

11.
Digested sewage sludge mixed with copper mine tailings was incubated for 3 mo at 16 combinations of temperature (-1, 5, 10, and 15 degrees C) and soil moisture content (2, 8, 14, and 24% by weight). Carbon dioxide evolution and net N mineralization were measured at increasing time intervals. A two compartment first-order kinetic model (refractory and labile C) was fitted to the time series of measured CO2 fluxes using nonlinear regression analysis. The dependencies of the rate constants on moisture and temperature could be well described by log-linear functions. The estimated Q10 value (the factor by which the rate is increased as temperature is increased 10 degrees C) was 2.55. Within the range of temperature and moisture considered here, which correspond to conditions occurring naturally in Sweden, CO2 evolution was more strongly controlled by moisture than by temperature. Less mineral N accumulated during the experiment at the lowest moisture or temperature. However, the dependency of net N mineralization on moisture and temperature in the remaining treatments was less clear than for C evolution, presumably due to denitrification at the higher temperatures and moisture contents. Nitrate was formed after around 2 wk but only at 10 and 15 degrees C.  相似文献   

12.
The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well‐published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance‐based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.  相似文献   

13.
Models that accurately predict fecal coliform bacteria (FCB) concentrations, one of the most widely used measures of estuarine water quality, are needed to improve land use decision-making. Rapidly occurring changes in coastal land uses and the influence on water quality increases the urgency of having improved decision tools. For this study, samples were collected monthly from six coastal ponds, two tidal creeks and four shallow water wells for up to 212 years. These data were used along with other measures of environmental conditions and land classes within each watershed to construct quantitative relationships between combinations of variables and both total and presumed wildlife sources of FCB. Linear regression, bootstrapping and generalized additive modeling that incorporates both linear and nonlinear terms were used. Results of repeated simultaneous sampling on the same tide stage of ponds and downstream estuarine creeks suggest that most FCB come from wildlife and that the ponds effectively remove these bacteria except immediately following heavy rainfall. Predictive models for concentrations of total and presumed wildlife bacteria are provided along with simple measures to estimate watershed boundaries. It is proposed that these tools can be used to minimize impacts on receiving water body quality. The models can be used to test alternative development approaches within coastal watersheds similar to that found in the southeastern USA coastal zone as well as to evaluate specific proposed landscape alterations.  相似文献   

14.
Abstract: The effects of natural flow restoration on metals fate and transport in the Upper Tenmile Creek Watershed, Montana, were modeled using the Water Quality Analysis Simulation Program developed by the U.S. Environmental Protection Agency (USEPA). This 50‐km2 watershed has over 150 historic abandoned mines, including mine waste rock and tailings, as well as adits discharging acid mine drainage, and is the primary drinking water supply for the City of Helena. Water supply diversions almost completely dewater some stream reaches during summer low flows, but the city is considering a new drinking water source and restoration of natural flows in Tenmile Creek as part of acid mine drainage remediation and broader aquatic habitat restoration. One dimensional steady‐state simulation of total recoverable cadmium, copper, lead, and zinc in the mainstem was performed, and the model was calibrated to June 2000 base‐flow data. Representative low‐flows in August and high‐flow snowmelt conditions in June were modeled using mean monthly natural flow estimates from the U.S. Geological Survey and representative USEPA metals concentrations data. The modeling showed that total recoverable metals concentrations, and especially loads, can vary significantly among input locations and over time in the watershed. Some data gaps limit evaluation of variability and increase uncertainty in several locations. Model results indicated, however, that natural low‐ and high‐flow restoration by itself can reduce some metals concentrations in the mainstem compared to June 2000 values, which were influenced by significant water diversion. Some values (such as Zn) may still exceed standards during natural August low flow due to the remaining high concentrations and loads in the primary inputs to the mainstem. Others (such as Cu) can increase during high flow due to remaining mine waste sources and loading of particulate Cu associated with erosion and transport of solids. Greater than 50% reduction in concentrations and loads from some of the main tributaries may be necessary to meet all standards, especially for potential particulate loads with higher flows in June.  相似文献   

15.
A Forest Planning Language and Simulator (FORPLAN) has been developed to facilitate the use of simulation for integrating fire into the land management planning process.FORPLAN incorporates unique characteristics of previous systems, links numerous models and data bases, allows selection of variable resolution levels, and permits discrete time simulation of disturbances on plants, fuels, and animals. No previous computer experience is required of the user, sinceFORPLAN recognizes simple English words and phrases.  相似文献   

16.
Farmland habitat diversity in marginal European landscapes changed significantly in the past decades. Further changes toward homogenization are expected, particularly in the course of European agricultural policy. Based on three alternative transfer payment schemes, we modeled spatially explicit potential effects on the farmland habitat diversity in a marginal European landscape. We defined (1) a scenario with direct transfer payments coupled to production, (2) a scenario with direct transfer payments decoupled from production, and (3) a scenario phasing out all direct transfer payments. We characterized habitat diversity with three indices: habitat richness, evenness, and rarity. The habitat pattern in 1995 served as reference for comparison. All scenarios predicted a general trend of homogenization of the farmland habitat pattern, yet to a differing extent. Transfer payments coupled to production (Scenario 1) favored the abandonment of agricultural production, particularly in low-productive areas and arable land use in more productive areas. Habitat richness and habitat evenness had intermediate values in this scenario. Decoupling transfer payments from production (Scenario 2) supported grassland as most profitable farming system. This led to a grassland-dominated landscape with low values of all habitat diversity indices. Phasing out transfer payments (Scenario 3) resulted in complete abandonment or afforestation of agricultural land and extremely low values in all habitat diversity indices. Scenario results indicate that transfer payments may prevent cessation of agricultural production, but may not counteract homogenization in marginal landscapes. Conserving high farmland habitat diversity in such landscapes may require support schemes, e.g., Pillar Two of EU Common Agricultural Policy.  相似文献   

17.
Collaborative Modeling for Decision Support integrates collaborative modeling with participatory processes to inform natural resources decisions. Practitioners and advocates claim that the approach will lead to better water management, balancing interests more effectively and reducing the likelihood of costly legal delays. These claims are easy to make, but the benefits will only be realized if the process is conducted effectively. To provide guidance for how to conduct an effective collaborative modeling process, a task committee cosponsored by the Environmental Water Resources Institute (EWRI) of the American Society of Civil Engineers and by the U.S. Army Corps of Engineers' Institute for Water Resources developed a set of Principles and Best Practices for anyone who might convene or conduct collaborative modeling processes. The guidance is intended for both conflict resolution professionals and modelers, and our goal is to integrate these two fields in a way that will improve water resources planning and decision making. Here, the set of eight principles is presented along with a selection of associated best practices, illustrated by two different case examples. The complete document is available at: http://www.computeraideddisputeresolution.us/bestpractices/ .  相似文献   

18.
/ In 1991 and 1992, temperature, salinity, and fluorescence were measured by automatic continuous registration using instrumentation on a ferry crossing the southern North Sea daily along a transect between Zeebrugge, Belgium, and Hull, United Kingdom. The temperature ranged between 4 and 21 degrees C off the Belgian coast and between 6 and 17 degrees C in the middle of the transect. Salinity varied between 34 and 35.5 PSU in the offshore part of the transect, but showed much larger variation along the Belgian and UK estuarine coasts. Fluorescence, which was used as a measure of phytoplankton biomass, was highest at the continental coast and lowest near the English coast. Spring blooms of phytoplankton were found along the continental coast and in the channel-influenced water; in 1991 the blooms were denser than in 1992. Some summer blooms were also recorded. Water masses could be distinguished on the basis of salinity and fluorescence patterns. The general patterns in the data are compared with the literature and discussed in relation to river discharge, light penetration, and wind speed and direction. Finally, the value of automatic and frequent measurements of fluorescence for monitoring phytoplankton is compared with less frequent observations at selected stations. It is concluded that accurate information about phytoplankton biomass can only be established from the high-frequency data. KEY WORDS: Monitoring; Sampling; North Sea; Ferry; Fluorescence; Salinity; Temperature  相似文献   

19.
新建水库初期磷氮变化的动态模拟研究   总被引:2,自引:0,他引:2  
施为光  凌文州 《四川环境》1999,18(4):42-47,63
本文首先建立磷氮时空分布模型并确定模型参数的率定方法。文章模拟了新建清平水库建库初期磷氮变化情况,得出由不稳定到稳定的过程。水库磷氮时空变化的模拟结果表明,空间分布是从库尾到大坝浓度逐渐递砬,时间分布是一年中P,N浓度七月份最高,年初年末最低,其分布央线类似高斯分布。  相似文献   

20.
Water resources in the Yangtze River Estuary (YRE), which is the vital water supply for Shanghai, decreased by approximately 2.45 Gm3 in 2006, the second‐worst recorded drought year. A numerical model was developed to investigate the effects of this extreme drought on pollutant transport processes in the YRE. The model was calibrated against observations and displayed good agreement. Residence time, a critical hydrodynamic indicator, was implemented to indicate pollutant transport processes. Numerical experiments were conducted to examine the possibly drought‐induced influences. The model results demonstrated that the influences on pollutant transport processes varied spatially and temporally, and these influences could partly explain the observed temporal and spatial variations of total nitrate in 2006. The area most susceptible to drought is in the north branch with 2‐11 days' extension of residence time. As the drought occurred in both the high and normal water periods, its influences were more significant during the normal water period with saltwater intrusion into the north branch. The drought also introduced a pollutant transport lag in timescale of approximately five days by diminishing the seaward advection flux with freshwater discharge. In 2006, the magnified tidal influence during the drought contributed more than usual to structuring pollutant transport, as the pollutant transport processes were intensely associated with tidal flow and tidal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号