首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
生物质催化气化制取富氢燃气的研究   总被引:19,自引:1,他引:19  
以流化床为反应器,探讨了一些主要参数如:反应器温度,水蒸气,当量比ER以及催化剂对气体成分、氢产率和潜在氢产率的影响。实验所用催化剂为白云石和镍基催化剂。在实验条件范围内,氢产率为22—83g/kg生物质(湿基),潜在氢产率为115—223g/kg生物质(湿基)。结果表明,较高的反应器温度,适当的水蒸气添加量可以有效提高氢的产出;白云石和镍基催化剂可使产品气中的氢含量提高10%以上。  相似文献   

2.
生物质废弃物催化裂解制备富氢燃气实验研究   总被引:5,自引:0,他引:5  
由生物质废弃物催化裂解制取氢气是一种可再生的制氢方法,本研究采用2段加热管式反应器,前段装生物质,后段装催化剂,用以研究生物质催化裂解制取氢气的特性,并提出潜在氢产率的概念对生物质制氢的经济技术可行性进行深入的分析。测试的3种生物质废弃物为:松木粉、木质素和纤维素,测试温度为600~700℃。实验结果表明,加入催化剂后3种物料的产氢率从5.48~15.06g/kg增加到12.94~37.73g/kg;催化剂对潜在产氢率的影响较小,加入催化剂前后的变化范围为:36、25~98、86g/kg到37.40~116.98g/kg。生物质废弃物催化裂解产氢率与相同温度下空气-水蒸气气化的氢产率相当,实验结果证明,生物质废弃物催化裂解是一种有效的制氢方法。  相似文献   

3.
生物质废弃物快速热解制取富氢气体的实验研究   总被引:2,自引:0,他引:2  
采用管式炉对红松锯屑快速热解制取富氢气体进行了实验研究,分析了反应器温度、物料粒径和催化剂对热解产物组成的影响.结果表明高温能加快生物质快速热解进程,减少炭和焦油生成量,利于富氢气体的生成,800℃时气态产物比例可达56.9 wt.%,气态产物中H2体积分数由4.3%(500℃下)上升至17.2%,H2 CO体积分数达68.3%.小粒径能增大热解气态产物的比例,但对气态产物组成的影响很小,这可能与红松锯屑本身质地疏松有关.以与生物质直接混合方式添加的煅烧白云石能使热解产物中H2含量增加,但造成产气过程变缓,炭生成量增多,富氢气体总产量未能得到提高.  相似文献   

4.
由生物质废弃物催化裂解制取氢气是一种可再生的制氢方法,本研究采用2段加热管式反应器,前段装生物质,后段装催化剂,用以研究生物质催化裂解制取氢气的特性,并提出潜在氢产率的概念对生物质制氢的经济技术可行性进行深入的分析.测试的3种生物质废弃物为:松木粉、木质素和纤维素,测试温度为600~700℃.实验结果表明,加入催化剂后3种物料的产氢率从5.48~15.06g/kg增加到12.94~37.73g/kg;催化剂对潜在产氢率的影响较小,加入催化剂前后的变化范围为:36.25~98.86g/kg到37.40~116.98g/kg.生物质废弃物催化裂解产氢率与相同温度下空气-水蒸气气化的氢产率相当,实验结果证明,生物质废弃物催化裂解是一种有效的制氢方法.  相似文献   

5.
富油煤原位热解的油、气等产物可通过开采形成的压裂缝进入地下环境,产生一系列环境行为。为进一步了解富油煤热解产物在地下环境中的自然降解与挥发行为,选择粉砂作为典型土壤,以富油煤热解焦油为典型污染物,开展了煤焦油5种组分在粉砂中的自然降解和挥发行为研究,建立了2种环境行为的动力学模型;进一步考察了温度、污染物初始质量浓度等因素对自然降解与挥发的影响。结果表明,煤焦油各组分在粉砂中的降解效果顺序为,酚油>洗油>萘油>沥青>蒽油,且粉砂中各组分的自然降解符合一级动力学方程。其中,酚油的降解速率常数最大,为6.18×10−3;而蒽油的半衰期最长,达到了228 d;温度35 ℃时的降解率为67%,初始质量浓度为10 g·kg−1时,降解率高达72%。粉砂中煤焦油的挥发符合Elovich方程,各组分在粉砂中的挥发效果顺序为,酚油>萘油>洗油>蒽油>沥青。其中,酚油的挥发率是沥青挥发率的4倍;酚油在35 ℃时的挥发率是15 ℃的1.2~2.5倍,污染物初始质量浓度对煤焦油各组分的挥发影响较小。本研究结果可为开展原位开采引起的地下水环境污染控制与修复提供参考。  相似文献   

6.
以流化床为反应器 ,探讨了一些主要参数如 :反应器温度 ,水蒸气 ,当量比ER以及催化剂对气体成分、氢产率和潜在氢产率的影响。实验所用催化剂为白云石和镍基催化剂。在实验条件范围内 ,氢产率为 2 2— 83g/kg生物质 (湿基 ) ,潜在氢产率为 115— 2 2 3g/kg生物质 (湿基 )。结果表明 ,较高的反应器温度 ,适当的水蒸气添加量可以有效提高氢的产出 ;白云石和镍基催化剂可使产品气中的氢含量提高 10 %以上。  相似文献   

7.
废弃中药渣催化热解制取生物油的研究   总被引:1,自引:0,他引:1  
利用热重分析仪(TGA)对植物类中药渣的热解特性进行了研究,用Coats-Redfern积分法计算了其热解动力学参数,得出中药渣热解反应符合一级反应动力学方程,其活化能较低,为36.0kJ/mol。考察了热解温度对气体、液体、固体产物的影响,在723K时,液体产物生物油产率最高,为39%。以介孔分子筛SBA-15以及分别负载Al、Sn、Ni、Cu和Mg的SBA-15作为催化剂,研究催化热解对气体、液体、固体产率及生物油组分的影响。研究表明,Al-SBA-15的催化效果较好,液体产率最高,为36%;采用元素分析仪和热值测定仪,得到用Al-SBA-15作为催化剂时生物油的氧质量分数最低,低位热值最高。用GC/MS对生物油组分的分析结果表明,添加Al-SBA-15后,热解产物中脂肪族和芳香族化合物增加,而含氧化合物减少。  相似文献   

8.
将城郊乡村生活垃圾加工成粒径6.0 mm左右的垃圾衍生燃料(RDF),采用热重(TG)分析和红外光谱等研究其热解特性.结果表明:(1)在RDF挥发分阶段和生物质挥发分阶段,助燃添加剂处于活泼分解阶段,加入了30%(质量分数)秸秆、玉米芯等生物质作助燃添加剂后的RDF(以下简写为混合RDF)分子碎片正发生内部氢重排,总体挥发分产物较多,并且有明显的二次裂解,失重提高到4.85 mg,失重率约提高12%.在RDF与生物质重叠的碳固定阶段,助燃添加剂失重率有一定提高,热重微分(DTG)峰值速率增加,为RDF碳固定阶段的进一步热解提供了良好的支持.(2)快加热产气速率均大于慢加热.(3)热解终温越高,越有利气体析出.(4)RDF的热解固体产率随着热解终温的升高而降低,在850℃时为31.9%;热解气体产率随着热解终温升高而迅速升高,在850℃时可达49.8%.(5)根据红外光谱图,城郊乡村生活垃圾加工成的RDF中所含的氯元素基本上以HCl形式释放.(6)一级动力学反应可以准确地描述物料热解过程.  相似文献   

9.
镍基催化剂对污泥微波热解制生物气效能的影响   总被引:1,自引:0,他引:1  
为实现污水污泥减量化、无害化及资源化的目标,在微波热解污水污泥基础上,进行了镍基催化剂对制取生物气效能影响的研究。采用元素分析对污泥元素进行检测,气/质联用分析(GC-MS)和气相色谱(GC)对热解生物气的组成和含量进行测定。实验结果表明,镍基催化剂的添加对微波热解污水污泥制取生物气有较大促进作用。5%添加量与800℃热解终温条件下具有最佳催化效果:生物气中H2、CO产量最大,H2产量由29 g/kg增加到35.8 g/kg,提升23.4%,CO产量由302.7 g/kg增加到383.3 g/kg,提升26.6%;同时催化剂还能提高热能利用效率,降低热解终温,即5%添加量在700℃热解终温时可达到空白800℃时的产气效果;镍基催化剂主要在500~600℃时发挥催化作用,加快了H2和CO的释放。微波热解污泥制取的生物气具有产量大、富含H2与CO等优点,可推动污水污泥的资源化进程。  相似文献   

10.
刘立群  张军  吴晓燕  田禹  张杰 《环境工程学报》2016,10(11):6622-6628
采用升温迅速的微波能作为热源,利用自主设计微波设备对含水率为82%(m/m)的湿污泥进行高温热解实验。采用单因素实验法,探究热解终温、停留时间、活性炭添加量对污泥热解生物气组分和含量的影响规律,确定连续式运行的最佳工况条件:热解终温900℃,停留时间50 min,活性炭添加比例为30%,热解功率1 600 W;在此基础上进行连续12 h微波高温热解实验,共热解污泥56 kg,产生生物气32.26 kg,热解油10.98 kg,固体残渣12.66 kg,产气转化率高达57.8%,生物气组分H2+CO含量高达67%,热解产物具有良好的工业利用价值。污泥热解生物气中H2S浓度超标10倍以上,而NH3浓度未超标,硫化氢的去除技术研究值得关注。  相似文献   

11.
利用废弃物衍生燃料的热化学处理法制富含氢气合成气   总被引:1,自引:0,他引:1  
吴畏 《环境工程学报》2013,7(4):1515-1521
为了探讨利用热化学方式从城市垃圾中制取富含氢气合成气过程的要素影响,解析氢气发生特性及其与主要影响要素之间的关系。在分析了城市生活垃圾组分特性的基础上,将其加工成组分均一的废弃物衍生燃料(refuse derived fuel,RDF),并在700、800和900℃等3个温度条件下,分别开展了RDF的热解、气化及水蒸汽气化等实验。研究表明,RDF的加工不但可有效降低垃圾含水率,还可将垃圾热值提高近1倍。温度和添加水蒸汽是从RDF中制取富含氢气合成气过程中的关键影响要素。其中,温度对氢气生成起到至关重要的决定作用,温度的提高对促进H2浓度的提高有利,同时,在气化过程中添加水蒸汽,可有效促进CO和H2等有价气体组分生成。在900℃的高温水蒸汽气化处理过程中,可获得H2浓度最高为34.13%的合成气。另外,800℃热解过程所产生的合成气热值最高,达到14 509 kJ/Nm3。  相似文献   

12.
张军  孙崎胜  吴晓燕  田禹  张杰 《环境工程学报》2016,10(11):6642-6648
污泥热解气是利用价值较高的生物质能源。以污泥微波热解气为燃料,建立固体氧化物燃料电池(solid oxide fuel cell)-微型燃气轮机(micro gas turbine,mGT)联合发电系统的模型,分析发电系统的性能,研究工作温度、电流密度、燃料利用率等运行参数对系统能效的影响。结果表明,设计工况下以污泥热解气为燃料的SOFC-MGT联合发电系统的发电效率达到55.9%,热电联产(CHP)效率高达74.8%,是高效的生物质能源利用方式。温度和电流密度对SOFC的性能具有较为明显的影响,合理提高工作温度和电流密度有利于提高SOFC的功率密度。研究还表明,燃料利用率增加时,SOFC的发电效率明显提升,整个系统的效率参数变化不明显,应从热解气组成和系统的安全性考虑,选择适当的燃料利用率。  相似文献   

13.
废塑料裂解生产原料油的研究   总被引:1,自引:0,他引:1  
本文对聚乙烯和聚丙烯的混合物裂解成原料油进行了研究 ,在 44 0℃条件下 ,不同比例的聚乙烯和聚丙烯被裂解。结果发现 ,聚丙烯有最高的液体回收率。几种催化剂被应用到聚丙烯的裂解过程中。裂解产品组分的构成及催化剂的选择是本研究的主要内容。通过比较几种不同催化剂的催化结果发现 ,复合催化剂有更好的催化效果。本研究为将来的废塑料综合利用提供了一种新的有用方法  相似文献   

14.
周显超  张璐  吴畏 《环境工程学报》2016,10(10):5914-5918
以生活垃圾衍生燃料RDF(refuse derived fuel)为原料,在750℃下进行了催化气化-改质实验,研究了氧气供应量、Ni基催化剂组分等操作要素对合成气生成特性的影响。结果表明:氧气供应量ER(equivalent ratio)的增加可以提高碳素转化率和冷气体效率;在Ni基催化剂中添加Mg、Ce、K、Ca和Zn等金属助剂可以有效改善改质催化性能,促进焦油分解,提高有效气体收率。在750℃温度条件下,控制供氧量ER=0.04时,通过催化气化-改质处理,可以从RDF获得H2体积分数约29.00%的清洁合成气,冷气体效率和碳素转化率分别为44.41%和82.41%,合成气收率可达0.244 m3·kg-1(RDF)。  相似文献   

15.
为探索生活垃圾催化热解液体产物特性变化规律,选取Na2CO3、CaO、Fe2O33种催化剂,利用固定床实验、红外分析(FT-IR)进行生活垃圾热解液体产物产率和组分特性研究.结果表明,热解终温600℃无催化剂时,生活垃圾热解液产率为39.80 wt%,添加3种催化剂后热解液产率均降低;生活垃圾分别添加1%的Na2CO3和CaO后,热解油氧含量由22.49%分别降低到20.12%和18.53%,低位热值由30.30 MJ/kg分别提高到33.79和32.74 MJ/kg;无催化剂时热解油成分为脂肪类、含氧化合物及少量芳香类混合物,加催化剂后热解油中芳香类物质峰面积比例显著增加,而含氧化合物峰面积比例降低,羟基类及羧酸类含氧化合物峰面积比例明显减少,其他含氧物峰面积比例却增加;CaO催化效果较明显,生活垃圾添加1%的CaO热解油中芳香类物质峰面积比例从4.36%增加到29.46%,含氧化合物峰面积比例由49.42%降低到23.12%,其中羟基类和羧酸类化合物峰面积比例分别由34.03%和10.65%降低到0.00%和3.34%,其他含氧化合物峰面积比例由4.73%增加到19.77%.  相似文献   

16.
中孔分子筛AI-MCM-41催化裂解聚烯烃反应研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了不同硅铝比的中孔分子筛AI-MCM-41,将其应用于高密度聚乙烯(HDPE)和聚丙烯(PP)的催化裂解反应。通过改变硅铝比、反应温度和催化剂用量,对Al-MCM-41催化HDPE和PP裂解反应的规律进行了探讨,研究表明,HDPE裂解反应受硅铝比的影响较大;而对于PP裂解反应,硅铝比在一定范围内对催化剂活性的影响不明显。另外,与热裂解和HZSM-5小孔分子筛的催化裂解结果进行了比较,结果证明A1-MCM-41具有较高的催化活性和较高的液体产物收率,尤其适合于空间位阻较大的PP的催化裂解反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号