首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently emerged brook charr (Salvelinus fontinalis) foraging in still-water pools along the sides of streams tend to be either sedentary, feeding from the lower portion of the water column (a sit-and-wait tactic), or very active, feeding from the upper portion of the water column (an active search tactic). We tested whether the individual differences in foraging behavior were associated with baseline concentrations and responses of cortisol, a steroid hormone linked to personality differences in a variety of animals including fishes. We quantified the proportion of time spent on moving by focal charr in the field and then capturing them. Captured individuals were either (i) sacrificed immediately to quantify baseline cortisol concentrations, (ii) held in an unfamiliar field environment for 15 min and then sacrificed to quantify cortisol concentrations in response to handling and holding in a novel field environment, or (iii) held in an unfamiliar field environment with a white Plexiglas base (stressor) for 15 min to quantify cortisol concentrations in response to a novel object. Eleven statistical models relating cortisol concentrations to the proportion of time individuals spent on moving while searching for prey were compared using multi-model inferencing. Cortisol concentrations were higher for charr that spent a lower proportion of time on moving in the field than for charr that spent a higher proportion of time on moving. For a given proportion of time spent on moving, mean cortisol concentrations between baseline and experimental treatments, our measure of cortisol response, did not differ markedly. Our findings suggest that the foraging tactics displayed by wild brook charr in the field could reflect differences in how individuals perceive their environment.  相似文献   

2.
Summary Young-of-the-year brook charr in streams use either an active or a sit-and-wait foraging tactic and exhibit a range of resource defense from territoriality to tolerating conspecifics. We use simple graphical models, based on encounter rate with drift and the theory of economic defendability, to predict qualitative changes in the aggressiveness and mobility of brook charr in relation to current velocity. Aggressiveness (percent of conspecifics eliciting an overt response) initially increases with increasing current velocity, as does drift rate and foraging rate. However, aggressiveness decreases at high current velocities, probably because of increased costs of defense at these velocities. In standing water areas, brook charr use primarily an active foraging tactic, but mobility (percent time spent moving) decreases rapidly as current velocity increases. These results are generally consistent with the simple graphical models. A literature survey suggests that the models can be generalized for most species of stream salmonids.  相似文献   

3.
Some recently emerged brook charr (Salvelinus fontinalis) inhabiting still-water pools along the sides of streams are sedentary and eat crustaceans from the lower portion of the water column. Others are more active and eat insects from the upper portion of the water column. We provide evidence that this divergent foraging behavior reflects short-term divergent selection brought about by intraspecific competition in the presence of alternative food sources. Rates of encounters and interactions between individuals were density dependent, and encounter and interaction events were closely timed with prey capture attempts. In addition, aggressive fish made more foraging attempts per minute than nonaggressive fish. Aggressive fish were also either inactive or very active, while nonaggressive fish exhibited intermediate levels of activity. Growth rate potential, an important component of fitness during the early life stages of brook charr, was assessed using tissue concentrations of RNA and found to be highest for sedentary fish and for active fish making frequent foraging attempts, and lower for fish exhibiting intermediate levels of activity. Our findings support contentions that individual behavior plays an important role during initial steps in the evolution of resource polymorphisms. Received: 27 July 1998 / Accepted after revision: 16 November 1998  相似文献   

4.
Absolute and relative volumes of four sensory areas (olfactory bulb, optic tectum, octavolateral area, gustatory area) and two integration centers (telencephalon, cerebellum) were determined in 39 specimens of the demersal grenadier Coryphaenoides armatus from early postmetamorphic stages to adulthood (94–900 mm total length). The relative volume of the optic tectum decreased and the relative volume of the olfactory bulb increased up to a total length of about 500 mm (corresponding to a total weight of about 1 kg) and remained constant subsequently, whereas the relative volumes of the octavolateral and gustatory areas were unchanged during growth. The developmental switch in sensory orientation from vision to olfaction is associated with changes in behavior recorded in lander experiments and feeding strategies based on head morphology and stomach content.  相似文献   

5.
Search volume of cruising planktivorous fish was calculated based on its detailed behavior Th examine the factors influencing search volume, a series of experiments were conducted by varying ambient conditions, such as structural complexity light intensity and turbidity Pseudorasbora parva were used in experiment as predator and Daphnia pulex was selected as prey The shape of scanning area of P parva showed elliptic and the search volume changed drastically depending on ambient conditions. Compared with the results of previous foraging model, the search volumes of the fish under previous study were larger (1.2 to 2.4 times) than those from our study These results on the changes in feeding rate can be useful in determining microhabitat requirement of P parva and othercyprinids with a similar foraging behavior The calculated search volume is compared with other foraging model andthe effect of zooplankton-planktivore interactions on aquatic ecosystem is discussed.  相似文献   

6.
Summary Decreasing levels of simulated solar radiation have the following effects in the diurnal basking lizard Lacerta vivipara: (i) increase in time spent basking with a consequent decrease in time available for foraging (ii) decrease in speed of movement whilst foraging (iii) decrease in total foraging distance, and hence contact with potential prey (iv) decrease in searching efficiency in an experimental arena. Complete absence of simulated solar radiation accentuates these effects, and reduces the proportion of faster-moving prey in the diet. Time taken to swallow prey (handling time) increases exponentially with decreasing body temperature. It is concluded from these results that maintaining relatively high activity temperatures (30–36°C) is adaptive for the species because the loss of potential foraging time caused by lengthy periods of basking is offset by the following advantages: increased contact with and capture of prey, increased efficiency of prey handling, and availability of a wider range of prey types.  相似文献   

7.
Summary Strike-induced chemosensory searching (SICS) was not detected experimentally in the cordylid lizard,Cordylus cordylus. Both components of SICS, a post-strike elevation in tongue-flick rate (PETF) and searching movements for attacked and released prey, were absent. The findings are consistent with previous data showing that PETF and/or SICS are lacking in all lizard families yet studied that forage primarily by ambush, but are present in actively foraging scleroglossan families and the herbivorous iguanian family Iguanidae. It is suggested that foraging behavior is a primary determinant of the presence or absence of SICS in lizards. Nevertheless, in most families in the two major clades, Iguania and Scleroglossa, the plesiomorphic foraging mode is retained. The findings agree with the prediction that SICS is absent in families lacking lingually mediated prey chemical discrimination (PCD), presumably due to selection against movement by ambush foragers that avoid being detected by either prey or predators because they remain motionless. Although PETF and SICS were absent, labial-licking and lingual movements similar to those observed after swallowing increased after biting prey, suggesting that the functions of these lingual movements may have been related to grooming. Locomotory movements did not increase following biting and appeared to represent avoidance of the experimenter.  相似文献   

8.
The energy efficiency of the foraging behavior of Astropecten articulatus (Say) was evaluated in the laboratory. Individuals utilized in the study were collected in the northern Gulf of Mexico from 1990 to 1992. Sea stars presented with equal numbers and weights of low-quality and high-quality prey consistently selected prey of the higher quality. Choice of prey appeared to be mediated by contact chemoreception. Individuals presented with equal weights or equal numbers of different-sized prey models demonstrated a significant preference for smaller prey. Size-selective feeding may be attributable to the ease of manipulation and ingestion of smaller prey, which mazimizes food intake per unit time. In the absence of prey, A. articulatus exhibited a directional pattern of movement. However, as prey were encountered, both the frequency and magnitude of angular deviations in the foraging path increased, resulting in increased foraging in areas of higher prey density. This response to prey availability may increase foraging efficiency by maximizing the rate of prey encounter. Like four other species of the genus Astropecten, A. articulatus exhibited two peaks of activity corresponding with dawn and dusk. Diurnal activities with periods of increased prey availability or periods during which predators are diminished or absent. The sea star A. articulatus exhibits foraging behaviors consistent with the maximization of net energy intake per unit foraging time.  相似文献   

9.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

10.
The survival of marine predators depends on behavioural plasticity to cope with changes in prey distribution. Variability in behaviour might predict plasticity and is easier to assess than plasticity. Using miniaturized GPS loggers over several breeding seasons in two Norwegian Northern gannet (Morus bassanus) colonies, we investigated if and how the variability within and between individuals, but also between colonies and years, affected foraging strategies. Results revealed strong individual variability (foraging trip durations, foraging effort and different foraging areas). Individuals from both colonies showed preferred commuting routes, flight bearings and feeding hotspots. Individuals from the largest colony used larger and more foraging areas than individuals from the small colony. Feeding hotspots and foraging ranges varied amongst years in the largest colony only. Our study demonstrated that gannets show flexibility by changing prey fields that are driven by shifting oceanographic conditions.  相似文献   

11.
The rates and patterns of feeding and displacement of predators constitute two of the most important plastic behavioral responses that allow individuals to respond quickly to changes in abundance of their prey, predation risks and to rapid alterations in environmental conditions. In this study, we quantified seasonal and spatial variation in displacement (net changes in location in 12 or 24 h periods) and prey consumed of marked individuals of the keystone seastar Heliaster helianthus at six sites spanning 600 km along the coast of north-central Chile. We evaluated the hypotheses that: (1) at sites with low availability (cover) of the main prey, the mussel Perumytilus purpuratus, Heliaster displays larger displacements and consumes a greater proportion of other prey (e.g. mobile species) than at sites with high mussel cover, (2) daily displacements will be correlated with sea surface temperature (SST) and (3) increased wave action will reduce seastar daily displacement. Our results show that Heliaster displacement is higher at sites with lower availability of P. purpuratus; and at these sites, a larger proportion of Heliaster individuals are observed feeding, mostly on other prey (e.g. limpets), which could offset the higher costs associated with increased movement. In addition, wave forces affected the activity of Heliaster negatively. Contrary to our expectations, the daily displacements did not show any relationship with SST measured on the day or the previous days of the surveys, despite the fact that average displacement was generally higher in summer than in winter months. Future studies should examine Heliaster movement during single foraging excursions and determine whether these responses affect the growth and reproductive output of individuals. Such information is vital to understand how changes in prey abundance and environmental conditions alter the behavior and energy budget of this predator and its ability to control prey populations.  相似文献   

12.
The grand skink, Oligosoma grande, is a diurnal rock-dwelling lizard from the tussock grasslands of Central Otago, New Zealand, whose diet includes a variety of arthropods and fruit. We conducted a field experiment to examine the influence of prey distribution on foraging behavior and spacing patterns. On sites where prey distribution was unaltered (control sites), males and females differed in diet and foraging behavior. Most male feeding attempts were directed at large strong-flying insects, and males used a saltatory search pattern that involved relatively infrequent moves of long duration. Females spent more effort catching small weak-flying insects and visiting fruiting plants. Their search behavior involved frequent moves of short duration. The placement of meat-bait on experimental sites led to a redistribution of large flies without influencing other prey types. Experimental females switched foraging strategy by adopting a search pattern of relatively infrequent moves of long duration, increasing the frequency of attempts to capture large prey, and reducing the importance of fruit in their diet. The experimental manipulation appeared to influence space use. On control sites, both sexes had comparably sized home ranges. On experimental sites, male home ranges were significantly larger than female home ranges. Received: 3 November 1997 / Accepted after revision: 13 December 1998  相似文献   

13.
Studies have shown that pelagic predators do not overlap with their prey at small scales. However, we hypothesized that spinner dolphin foraging would be affected by the spatio-temporal dynamics of their prey at both small and large scales. A modified echosounder was used to simultaneously measure the abundance of dolphins and their prey as a function of space and time off three Hawaiian islands. Spinner dolphin abundance closely matched the abundance patterns in the boundary community both horizontally and vertically. As hypothesized, spinner dolphins followed the diel horizontal migration of their prey, rather than feeding offshore the entire night. Spinner dolphins also followed the vertical migrations of their prey and exploited the vertical areas within the boundary layer that had the highest prey density. Cooperative foraging by pairs of dolphins within large groups was evident. The geometric and density characteristics of prey patches containing dolphins indicate that dolphins may alter the characteristics of prey patches through this cooperative foraging. The overlap of Hawaiian spinner dolphins and their prey at many temporal and spatial scales, ranging from several minutes to an entire night and 20 m to several kilometers, indicates that the availability of truly synoptic data may fundamentally alter our conclusions about pelagic predator-prey interactions.  相似文献   

14.
Individual-level variation in resource use occurs in a broad array of vertebrate and invertebrate taxa and may have important ecological and evolutionary implications. In this study, we measured the degree of individual-level variation in prey preference of the hunting wasp Trypoxylon albonigrum, which inhabits the Atlantic Forest in southeastern Brazil. This wasp captures several orb-weaving spider genera to provision nests. Individuals consistently specialized on a narrow subset of the prey taxa consumed by the population, indicating the existence of significant individual-level variation in prey preferences. The population niche was broader in the wet season in terms of both prey size and taxa. In the case of prey size, the population niche expansion was achieved via increased individual niche breadths, whereas in the case of prey taxa, individual niches remained relatively constrained, and the population niche expanded via increased interindividual variation. The observed pattern suggests the possibility of functional trade-offs associated with the taxon of the consumed prey. The nature of the trade-offs remains unknown, but they are likely related to learning in searching and/or handling prey. We hypothesize that by specializing on specific prey taxa, individuals increase foraging efficiency, reducing foraging time and ultimately increasing reproductive success.  相似文献   

15.
Summary Polybia sericea (Olivier) (Hymenoptera: Vespidae) foragers were trained to visit experimental foraging plots and tests were conducted to determine the role of visual, olfactory, and chemotactile cues in prey location. Foragers approached prey from downwind and hovered downwind of visual and olfactory stimuli. Olfactory cues were more likely to elicit landing than were visual cues. Biting of potential prey was most consistently elicited by a combination of visual, tactile, and chemotactile cues. Foragers encountering large prey carried a piece back to the nest and returned for prey remains. These returning foragers used visual cues to direct intensive aerial search; olfactory prey cues elicited landing.  相似文献   

16.
Parupeneus barberinus forages on benthic invertebrates using a wide range of foraging modes, including vigorous digging in the substratum, resulting in considerable disturbance to the benthos. Polychaetes were the most important prey item for all size classes, but fishes less than 120 mm total length consumed more small ostracods and nematodes than did larger fishes. Fishes greater than 120 mm total length consumed mostly bivalves, and fishes over 240 mm total length consumed mostly bivalves and crabs. A morphological examination of the feeding apparatus suggested that the size of important prey items consumed was determined by gape height and jaw width. Prey available to different size classes of fishes was determined by combining information on microhabitat use, foraging behaviours, and prey volumes in the substratum. Small fishes spent more time foraging on the reef flat and slope, compared with larger fishes that foraged mostly on the reef edge and base. In addition smaller fishes foraged mostly in the upper 2 cm of sediment, whereas larger fishes often foraged to depths of 10 cm. Selection ratios showed that different size classes of fishes selectively extracted different prey items from the substratum. Small fishes showed a preference for ostracods whereas large fishes selected for bivalves and crabs. Although polychaetes were the dominant prey item for all size classes, they were consistently selected against.  相似文献   

17.
Thums M  Bradshaw CJ  Hindelli MA 《Ecology》2011,92(6):1258-1270
Predators are thought to reduce travel speed and increase turning rate in areas where resources are relatively more abundant, a behavior termed "area-restricted search." However, evidence for this is rare, and few empirical data exist for large predators. Animals exhibiting foraging site fidelity could also be spatially aware of suitable feeding areas based on prior experience; changes in movement patterns might therefore arise from the anticipation of higher prey density. We tested the hypothesis that regions of area-restricted search were associated with a higher number of daily speed spikes (a proxy for potential prey encounter rate) and foraging success in southern elephant seals (Mirounga leonina), a species exhibiting both area-restricted searches and high interannual foraging site fidelity. We used onshore morphological measurements and diving data from archival tags deployed during winter foraging trips. Foraging success was inferred from in situ changes in relative lipid content derived from measured changes in buoyancy, and first-passage time analysis was used to identify area-restricted search behavior. Seals exhibited relatively direct southerly movement on average, with intensive search behavior predominantly located at the distal end of tracks. The probability of being in search mode was positively related to changes in relative lipid content; thus, intensively searched areas were associated with the highest foraging success. However, there was high foraging success during the outward transit even though seals moved through quickly without slowing down and increasing turning rate to exploit these areas. In addition, the probability of being in search mode was negatively related to the number of daily speed spikes. These results suggest that movement patterns represent a response to prior expectation of the location of predictable and profitable resources. Shelf habitat was 4-9 times more profitable than the other habitats, emphasizing the importance of the East Antarctic shelf for this and other predators in the region. We have provided rare empirical data with which to investigate the relationship between predator foraging strategy and prey encounter/ foraging success, underlining the importance of inferring the timing and spatial arrangement of successful food acquisition for interpreting foraging strategies correctly.  相似文献   

18.
Summary Foraging by a social wren, Campylorhynchus nuchalis (Troglodytidae), in a tropical savanna habitat is not enhanced by aggregation. Data for marked individuals show that solitary foraging results in a higher capture rate than foraging near others. We find no evidence of imitative foraging, as individuals actively avoid successful foragers following a capture and successful foragers do not restrict their search to recently productive stations or techniques. Captures are seldom temporally clumped, and clumping is probably not pronounced enough to favor imitation. Juveniles show no greater tendency to respond to captures of others, or to succeed in foraging in a group, than do adults. Aggregation is probably disadvantageous for foraging because of dispersed, scarce, cryptic, and noneruptive prey and because of the searching technique of these foliage-gleaning insectivores. If predator avoidance is enhanced by aggregation, it does not result in either increased survival or increased foraging efficiency in large groups, even by juveniles.  相似文献   

19.
To elucidate the effects of light, site, temperature, time after emersion, and wind speed on foraging attempt rate (FAR) (attempts/unit time) and feeding success (FS) (captures/attempts) in the obligate visual foraging shorebird, Kentish plovers Charadrius alexandrinus, field observations were performed at a sandflat in Tokyo Bay, using a visible-light telescope camcorder during the day and a thermal infrared telescope camcorder at night. The re-analysis capability and frame-step replay of highly magnified video-images can contribute to accurate measurement of feeding behaviour over conventional focal observation techniques. Kentish plovers increased both FAR and FS in areas of high prey (polychaetes and crabs) density, resulting in a synergistic increase in feeding rate (captures/unit time). In areas of high prey abundance, FAR was higher at lower wind speed. FS increased with increasing time after emersion. Increasing temperatures induced a positive effect on FAR but a negative effect on FS. The effect of light on FAR was not observed; however, time-to-defecation occurrence was 2.2-fold shorter at night than during the day, indicating that feeding rate and FS are higher at night. These results are attributable to an increase in availability of cues due to higher nocturnal activity in polychaetes. Since available foraging time (emersion time) at night was 1.7-fold longer than during the day in the present study period, Kentish plovers could capture 3.7-fold (2.2 × 1.7) more prey at night than during the day. Results from this study indicate that nocturnal feeding in overwintering plovers is not a compensation but a major foraging activity to meet their energy requirements. An erratum to this article can be found at  相似文献   

20.
Faced with an intermittent but potent threat, animals exhibit behavior that allows them to balance foraging needs and avoid predators and over time, these behaviors can become hard-wired adaptations with both species trying to maximize their own fitness. In systems where both predator and prey share similar sensory modalities and cognitive abilities, such as with marine mammals, the dynamic nature of predator-prey interactions is poorly understood. The costs and benefits of these anti-predator adaptations need to be evaluated and quantified based on the dynamic engagement of predator and prey. Many theoretic models have addressed the complexity of predator-prey relationships, but few have translated into testable mechanistic models. In this study, we developed a spatially-explicit, geo-referenced, individual-based model of a prototypical adult dusky dolphin off Kaikoura, New Zealand facing a more powerful, yet infrequent predator, the killer whale. We were interested in two primary objectives, (1) to capture the varying behavioral game between a clever prey and clever predator based on our current understanding of the Kaikoura system, (2) to compare evolutionary costs vs. benefits (foraging time and number of predator encounters) for an adult non-maternal dusky dolphin at various levels of killer whale-avoidance behaviors and no avoidance rules. We conducted Monte Carlo simulations to address model performance and parametric uncertainty. Mantel tests revealed an 88% correlation (426 × 426 distance matrix, km2) between observed field sightings of dusky dolphins with model generated sightings for non-maternal adult dusky dolphin groups. Simulation results indicated that dusky dolphins incur a 2.7% loss in feeding time by evolving the anti-predator behavior of moving to and from the feeding grounds. Further, each evolutionary strategy we explored resulted in dolphins incurring an additional loss of foraging time. At low killer whale densities (appearing less than once every 3 days), each evolutionary strategy simulated converged towards the evolutionary cost of foraging, that is, the loss in foraging time approached the 2.7% loss experienced by evolving near shore-offshore movement behavior. However, the highest level of killer whale presence resulted in 38% decreases in foraging time. The biological significance of these losses potentially incurred by a dusky dolphin is dependent on various factors from dolphin group foraging behavior and individual energy needs to dolphin prey availability and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号