首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

Glutathione‐S‐transferase (GST) activity of maize (Zea mays L.) seedlings treated with 1‐aminobenzotriazole (ABT) derivatives and/or EPTC were measured using EPTC‐sulfoxide as substrate. Both safeners and ABT derivatives significantly elevated the GST activity in the concentrations needed for effective safening action. ABT is considered as an inhibitor of plant cytochrome P‐450 monooxygenases (P‐450) and, because of this, used to study herbicide mode of action. Our data indicate that ABT has multiple effects on plants influencing not only P‐450 but GST as well. Thus the role of ABT in herbicide metabolism needs reconsideration.  相似文献   

2.
Abstract

Structurally new N1aryl‐N2‐dichloroacetyl glycine and alaninamides were prepared. Greenhouse experiments were conducted to determine the effectiveness of the new compounds in protecting corn seedlings from chloroacetanilide (acetochlor, alachlor, dimethachlor, metazachlor, metolachlor) injury using dichlormid and BASF‐145138 as standard safeners. High rates of chloroacetanilides caused significant injury to sensitive corn hybrids. The most acive derivatives reduced injury to corn from dimethachlor and metolachlor and lesser extent from acetochlor and metazachlor. The most effective derivatives of the new compounds displayed better safening activity than the standards. Some of the new compounds were found to be selective safeners when formulated as a tank mixture with metolachlor in a 1:33–100 safener‐to‐herbicide ratio showing the same or better activity than the standard used.

Nomenclature: BASF‐145138, 1‐dichloroacetyl‐hexahydro‐3,3,8α‐trimethyl‐pyrrolo‐[1,2‐α]—pyrimidin‐6‐(2H)‐one; EPTC, S‐ethyl‐N,N‐dipropylcarbamothioate; dichlormid, 2,2‐dichloro‐N,N‐di‐2‐propenyl acetamide; corn, Zea Mays L. ‘Pannonia SC’.  相似文献   

3.
Abstract

Wheat (Triticum aestivum L.) seedlings grown from seeds produced in “organic”; (non‐chemical) and “conventional”; cropping systems are characterized by a) similar rates of root and shoot growth, b) equal sensitivity to phytotoxicity by the herbicide glyphosate, and c) equivalent basal activity of the enzyme glutathione S‐transferase (both in the roots and in the shoots). In addition, treatment of these seedlings with glyphosate leads to significantly higher contents of this enzyme both in the shoots and in the roots. However, time‐course and dose‐response investigations indicate significant differences in the induction pattern of glutathione S‐transferase: the response of “conventional”; wheat seedlings takes place earlier and with higher efficiency, than that of the “organic”; ones.  相似文献   

4.
Abstract

Glutathione content and glutahione‐dependent enzymes were measured in the liver of two fish species, gudgeon (Gobio gobio) and roach (Rutilus arcasii), from the river Bernesga (Spain) caught downstream and upstream of the waste site of several chemical industries. Animals from contaminated sites display a reduced glutathione concentration and a tendency to the decrease of glutathione S‐transferase activity. Glutathione peroxidase activity was significantly elevated only in the liver of Gobio gobio and glutathione reductase activity in that of Rutilus arcasii. Our data indicate that the glutathione system constitutes a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione and glutathione‐dependent enzymes in both fish species suggest a different susceptibility to toxins.  相似文献   

5.
Abstract

The induction of drug metabolizing enzymes in mammals is summarized including both enzymes of the cytochrome P‐450‐dependent microsomal mixed function oxidase system and glutathione S‐transferases. Particular emphasis is placed on the role of pesticides as inducers, the early work being summarized while investigations carried out at North Carolina State University are considered in greater detail. Finally, the possible significance of induction is considered.  相似文献   

6.
Abstract

The bran toxic baits (0.5 % w/w) of five oxime carbamate pesticides; aldicarb, aldoxycarb, methomyl, oxamyl and thiofanox were tested for their molluscicidal activity against Theba pisana snails under Laboratory conditions. In addition, the in vivo effects of these compounds on seven vital enzymes namely Acetylcholin‐esterase (AchE), glutathion‐S‐transferase (GST), glutamic oxlaoacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), acid phosphatase (AcP), alkaline phosphatase (AIP), and adenosine triphosphatase (ATPase) activities of the snail tissue were also investigated after 1,3, and 5 days of exposure. The results showed that methomyl was the most potent candidate, whereas thiofanox was the least effective one against the snails. LT50’s values of aldicarb, aldoxycarb, methomyl, oxamyl and thiofanox were 5.77, 4.69, 2.31, 3.97 and 6.67 days, respectively. Results of the potency of the tested pesticides against AchE activity were in harmony with the toxicity of these compounds to snails. AchE, AcP, and AIP activities were inhibited by the tested pesticides. GST activity was inhibited by aldicarb but stimulated by oxamyl and thiofanox. Methomyl and oxamyl lead to significant elevation of GOT and GPT, whereas thiofanox treated snail induced a reduction of both enzymes activities. Aldicarb and aldoxycarb caused significant induction of ATPase activity.  相似文献   

7.
Abstract

With the exception of EPTC, herbicide treatments showed inhibitory effects on bacterial colony counts in a sandy loam soil for the first week. Monolinuron and simazine were stimulatory to the growth of fungi in the organic soil after 2 wk. None of the herbicide treatments affected nitrification during the first week of incubation. Except the treatment of EPTC in organic soil, all herbicides inhibited nitrification after 2 wk in both soils. All herbicide treatments stimulated SO4 formation during the 8‐wk period in the sandy loam soil. Simazine and tridiphane also stimulated sulfur oxidation after 4 wk in an organic soil. With the exception of EPTC and nitrapyrin, no significant inhibitory effect on the amount of biomass‐C was observed in the organic soil. A stimulatory effect on denitrification was observed with EPTC for 2 wk and monolinuron for 1 wk in the sandy loam soil and with simazine and tridiphane after 2 wk in the organic soil. It is apparent that the indigenous soil microorganisms can tolerate the effects of the chemicals for control of soil weeds.  相似文献   

8.
Abstract

Microbes are sources of a diverse array of phytotoxic compounds. These compounds are generally structurally different from commercial herbicides, targeting different molecular sites of action within the plant. These novel structures and sites can be excellent leads for the discovery and development of safer synthetic herbicides. Microbial phytotoxins are often more environmentally benign than synthetic herbicides. Examples of phytotoxins from fungi (AAL‐toxin, cornexistin, cyperin, and tentoxin) with novel structures and sites of action are discussed. AAL‐toxin is toxic to a wide variety of weeds at very low dose rates. AAL‐toxin and many of its analogues kill plants by inhibiting a ceramide synthase‐like enzyme, causing rapid accumulation of free sphingoid bases that disrupt membranes. Cornexistin appears to be metabolically cnverted to an inhibitor of certain aspartate amino transferase isoenzymes. Its activity can be reversed by feeding aspartate and glutamate or with tricarboxylic acid cycle intermediates. Its activity is much like that of (aminooxy)acetate. Cyperin is a diphenylether phytotoxin that inhibits protoporphyrinogen oxidase, but does not kill plants by this mechanism. It appears to have other effects on porphyrin metabolism. Tentoxin is toxic by two mechanisms. It disrupts chloroplast development by inhibiting the processing of a nuclear‐coded plastid protein, and it also inhibits photophosphorylation by acting as an energy transfer inhibitor of coupling factor 1 ATPase. Other examples of phytotoxins from microbes with promise as herbicides will be mentioned.  相似文献   

9.
Abstract

Effect of acute doses of technical grade of dichloro diphenyl trichloro ethane (DDT) and piperonyl butoxide (PB) on hepatic micro‐somal cytochrome P450 (Cyt. P450) and cytosolic glutathione‐S‐transferase (GST) activity in pigeon were studied after 24 hours of treatment. A completely reverse trend of changes in Cyt. P450 and GST activity were found as increase in Cyt. ?450 paralleled with decrease in GST activity following exposure to DDT. However, intensity of changes in Cyt. P450 was greater than that of GST. A dose dependent decrease in Cyt. ?450 and GST activity was observed after PB treatment. The study may, therefore, throw some light on metabolic alterations in wild birds resulting from environmental pollution by DDT and allied chemicals.  相似文献   

10.
Abstract

The effect of mercuric chloride (HgCl2) on the activities of catalase, Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and its effect on glutathione (GSH) content were evaluated in different organs (liver, kidneys, and brain) of mice after administration at 0, 0.25, 0.5 and 1.0 mg/kg/day for 14 days. The uptake of mercury shows that the kidneys accumulated the highest levels of mercury compare to brain and liver. The enzyme levels varied in mercury treated organs compare to control. A dose dependent increase of antioxidant enzymes occurred in the liver and kidneys. The increase in enzyme activities correlated with highest mercury accumulation in the kidneys and liver. Mercury is known to generate reactive oxygen species (ROS) in vivo and in vitro, therefore, it is likely that enzyme activities increased to scavenge ROS levels produced as a result of mercury accumulation. Glutathione content increased in liver and kidneys of mercury treated mice compare to control. The results showed that the highest oral dose of mercury significantly increased antioxidant enzymes in kidneys and liver. The increased antioxidant enzymes enhance the antioxidant potential of the organs to reduce oxidative stress.  相似文献   

11.
Wheat (Triticum aestivum L.) and other cereals produce allelochemicals as natural defense compounds against weeds, fungi, insects and soil-borne diseases. The main benzoxazinoid allelochemical of wheat is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), bound as beta-glucoside and released upon plant injury. When leached from wheat to soil, DIMBOA is microbially transformed to 6-methoxy-benzoxazolin-2-one (MBOA). Exploiting benzoxazinoids and their degradation products as substitutes for synthetic pesticides depends on knowledge of transformation pathways and kinetics. In an MBOA degradation experiment at a concentration of 2400 nmol g(-1) soil, the previously identified transformation products 2-amino-7-methoxy-phenoxazin-3-one (AMPO) and 2-acetylamino-7-methoxy-phenoxazin-3-one (AAMPO) were quantified. Three different kinetic models were applied to MBOA transformation kinetics; single first-order (SFO), first-order multi-compartment, and double first-order in parallel. SFO proved to be adequate and was subsequently applied to the transformations of MBOA, AMPO and AAMPO. Degradation endpoints, expressed as degradation time (DT), were calculated for MBOA, AMPO and AAMPO to test whether the maximum values for synthetic pesticides set by the European Commission and the Danish Environmental Protection Agency were exceeded. DT(50) values for MBOA and AMPO were 5.4 d and 321.5 d, respectively, and DT(90) values were 18.1 d and 1068 d, respectively. The DT(50) value for AMPO exceeded the maximum value. The persistence, concentrations and toxicity of metabolites such as AMPO should be considered when breeding cereal crops with increased levels of benzoxazinoids.  相似文献   

12.
Abstract

Safeners (also known as antidotes) are chemical or biological agents that reduce the toxicity of herbicides to crop plants by a physiological or molecular mechanism. Commercialized safeners are mainly chemical compounds that enhance the tolerance of selected grass crops such as maize (Zea mays L.), grain sorghum [Sorghum bicolor (L.) Moench], rice (Oryza sativa L.), and wheat (Triticum aestivum L.) to chloroacetanilide, thiocarbamate, sulfonylurea, imidazolinone, and aryloxyphenoxypropionate herbicides. In practice, safeners are applied either to the crop prior to planting (seed safeners) or to the soil together with the herbicide, formulated as a prepackaged mixture. Safeners act as "bioregulators”; controlling the amount of a given herbicide that reaches its target site in an active form. A safener‐induced enhancement of the metabolic detoxification of herbicides in protected plants is the most apparent mechanism for the action of all commercialized safeners. Herbicide‐detoxifying enzymes such as glutathione transferases (GST), cytochrome P‐450 monooxygenases (CytP450), esterases, and UDP‐glucosyltransferases are induced by herbicide safeners. At the molecular level, safeners appear to act by activating or amplifying genes coding for these enzymes (e.g., GST).  相似文献   

13.
Books available     
Abstract

The leaching behaviour of the herbicide acetochlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(ethoxymethyl)acetamide] was determined as compared with two congener compounds, alachlor [2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)acetamide] and metolachlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide]. The leaching profiles of the herbicides in columns with different types of soil and their capacity factors in reverse phase HPLC were compared. An approach for preliminary characteristic of the potential for water pollution of acetochlor is presented. The herbicide is classified as a leacher in soil and its potential for contamination of ground water is comparable with those of alachlor and metolachlor.  相似文献   

14.
Abstract

Treatment of pea and tobacco leaf discs with the resistance inducer DL‐β‐amino‐n‐butyric acid (BABA) led to a substantial induction of glutathione reductase (GR, E.C. 1.6.4.2.) enzyme activity. After exposure to 1 mM BABA for 96 hrs, the GR activities were 3.2‐fold and 2.9‐fold higher in pea and tobacco leaf discs, respectively, than GR activities in untreated controls. Elevated GR levels may contribute to the antioxidative protection of plants during pathogen attack.  相似文献   

15.
The protozoan, Tetrahymenathermophila, metabolizes pentachloronitrobenzene to several products, including nitrite, pentachlorothioanisole and pentachloroaniline. The latter two metabolites were identified by gas chromatographymass spectrometry. Pentachlorothioanisole may be produced via a glutathione-dependent pathway, and two key enzymes of this pathway, glutathione transferase and thiol S-methyltransferase, have been detected in crude extracts of this microorganism.  相似文献   

16.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

17.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   

18.
Abstract

Paddy (unmilled rice), milled rice and maize‐bound 14C residues were prepared using 14C‐succinate‐labelled malathion at 10 and 152 ppm. After 3 months, the bound residues accounted for 12%, 6.5% and 17.7% of the applied dose in paddy, milled rice and maize respectively in the grains treated at 10 ppm. The corresponding values for the 152 ppm were 16.6%, 8.5% and 18.8%. Rats fed milled rice ‐ bound 14C‐residues eliminated 61% of the 14C in the faeces and 28% in the urine. The corresponding percentages for paddy and maize were 72%, 9% and 53%, 41% respectively; indicating that bound residues from milled rice and maize were moderately bioavailable. When rice‐bound malathion residues (0.65 ppm in feed) were administered to rats in a 5 week feeding study, no signs of toxicity were observed. Plasma and RBC cholinesterase activities were slightly inhibited: blood urea nitrogen was significantly elevated in the test animals. Other parameters examined showed no or marginal changes.  相似文献   

19.

Abstract The in vivo effects of sublethal concentrations of deltamethrin (DM), a pyrethroid insecticide, on the hepatic microsomal cytochrome P450 (Cyt P450) content and the Cyt P450‐dependent monooxygenase activities (para‐nitrophenetole‐O‐deethylase, pNPOD; aminopyrene‐N‐demethylase, APND; ethylmorphine‐N‐demethylase, EMND; 7‐ethoxycoumarin‐O‐deethylase, ECOD; and ethoxyresorufin‐O‐deethylase, EROD) were examined in adult carp (Cyprinus carpió L.).

0.2 μg/1 DM treatment resulted in significant increases in APND, EMND and ECOD activities, whereas 2 μg/1 DM resulted in significant inhibitions of all studied isoenzyme activities with the exceptions of pNPOD and APND after 72 h. EROD was the only enzyme for which a slight increase in activity was observed. On repeated treatment, Cyt P450 could not be detected after 48 h, but the Cyt P420 level increased. All tested isoenzyme activities were inhibited, with the exception ofthat of EROD, which was enhanced.

All these changes in enzyme activities and Cyt P450 content demonstrate the effects of DM on fish. DM treatment at low concentration is presumed to cause induction of the Cyt P450‐dependent monooxygenases which may lead to faster metabolization of the insecticide. In contrast, DM at higher concentration strongly inhibited the activities of the studied enzymes. This finding may be due to the damaging effect of DM on the xenobiotic metabolizing enzyme systems offish.  相似文献   

20.
Faria M  López MA  Díez S  Barata C 《Chemosphere》2010,81(10):1218-1226
In the lower Ebro River exist the paradoxical convergence of relatively well preserved river dynamics with the historical presence of a chloralkali plant with a long history of mercury discharges and the recent invasion of foreign bivalves species. Here we performed a comparative study on two alien bivalves, the Zebra mussel and the Asian clam (Dreissena polymorpha and Corbicula fluminea), and one protected species of naiads (Psilunio littoralis), which is the most common species of the freshwater mussel assemblages in this river. Individuals of the three species were transplanted to three sites that included a clean unpolluted upstream site, a contaminated location next to the mercury source and a downstream one. The study focused on digestive gland antioxidant and oxidative stress responses such as antioxidant enzymes, glutathione S transferase, glutathione levels, metallothionein proteins, DNA strand breaks and lipid peroxidation levels. Results evidenced interspecies differences on accumulation levels of mercury, antioxidant defensive systems and oxidative tissue damage. The naiad species, despite of accumulating more mercury showed the greatest antioxidant defensive potential, which was characterized by having high constitutive activities of glutathione S transferase and inducible activities and levels of key antioxidant enzymes and glutathione. Exposed individuals of C. fluminea had moderate levels of metal accumulation, the highest activities of antioxidant enzymes but also high levels of lipid peroxidation. D. polymorpha mussels showed the lowest levels of mercury but the lowest antioxidant responses and consequently the highest levels of oxidative injuries in the DNA and of mortality. Our results support the hypothesis that naiad species might be more tolerant to pollution than exotic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号