首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the effect of sewage amendment (SA) on the dissipation of terbuthylazine, its degradation compound desethyl-terbuthylazine, and S-metolachlor in the soil. The experiment was conducted at Padua Experimental Farm (Italy). Herbicides dissipation was evaluated in soils differently fertilized for three years: with inorganic fertilizer, with sewage sludge, and with a combination of them. Terbuthylazine and S-metolachlor were applied on sorghum as a formulated product at a dose of 2.8?L ha?1, and their dissipation was followed for 2.5 months. The concentrations of herbicides and one metabolite in soil were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine and S-metolachlor followed a pseudo first order kinetics; they dissipated faster in soil amended only with inorganic fertilizer than in soils amended with sewage or sewage?+?inorganic fertilizer. The reduction in mineralization of the herbicides after sewage addition can be attributed to the reduced herbicide availability to microorganisms. The degradation of terbuthylazine led to the formation of desethyl-terbuthylazine. SA slowed down the formation and the degradation of desethyl-terbuthylazine, leading to a higher amount measured at the end of the incubation. These findings have practical implications for the assessment of the environmental fate of terbuthylazine and S-metolachlor in agricultural areas.  相似文献   

2.
The sorption-desorption of metolachlor [2-chloro-N-(ethyl-6-methyl phenyl)-N-(2-methoxy-1-methyl ethyl) acetamide], isoproturon [3-(4-isopropyl phenyl)-1,1-dimethyl urea] and terbuthylazine [N6-tert butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] herbicides was studied in two German soils at 1:10 soil to water ratio by batch method. Equilibrium of herbicides between soil and water (0.01 M CaCl2) was attained in 2 h. Sorption data fitted very well to Freundlich equation, represented by very high correlation coefficient (r2 > 0.934). Comparison of Freundlich K values indicated that sorption of all the three herbicides was most pronounced in soil having higher organic carbon content. Koc values were as expected nearly identical for each herbicide in the two soils. The Freundlich constant (1/n) was about 1 for metolachlor and less than 1 for terbuthylazine and isoproturon indicating a L-type of sorption isotherms. Desorption of all the three herbicides showed hysteresis. Nearly equal amounts of metolachlor, isoproturon and terbuthylazine were desorbed from both soils. There was a good correlation between Koc and solubility.  相似文献   

3.
Bacterial mineralisation of four sulfonylurea herbicides at 20 microg kg(-1) in a sandy soil from nine different depths in a sandy soil horizon (5-780 cm) was investigated in laboratory studies. Metsulfuron-methyl, chlorsulfuron, and tribenuron-methyl were 14C-labelled in the sulfonamide ring, while thifensulfuron-methyl was labelled in the thiophene ring. The highest mineralised amount in 126 days was observed for metsulfuron-methyl (40%) followed by tribenuron-methyl (25%), and thifensulfuron-methyl (11%). Chlorsulfuron showed low mineralisation in all the soils tested (<4%). Mineralisation of the herbicides metsulfuron-methyl and tribenuron-methyl varied according to soil depth (upper profile: 5-70 cm, and lower profile: 165-780 cm) and were proven faster in soil taken from depths 5-7 and 30-35 cm, and slower in depths 45-50 and 70-75 cm. Mineralisation was absent in the lower profile (165-780 cm). As an indicator of microbial activity bacterial counts were taken at the experimental start; these counts grouped in three levels: highest in the surface layer (5-7 cm), slightly lower in the depths 30-75 cm, and lowest in the lower profile (165-780 cm). Residual concentrations of metsulfuron-methyl correlated to the accumulated amount mineralised, with high residual concentrations in soil showing low mineralisation. Also chlorsulfuron showed high residual concentrations with increasing depth in the upper profile, but the relatively high dissipation at 30-35 cm and lower one at 45-50 cm could not be related with the lack of mineralisation. This shows that hydrolysis occurs, but mineralisation of the chloro-substituted sulfonamide is restricted. Tribenuron-methyl and thifensulfuron-methyl could not be detected due to interference with other compounds.  相似文献   

4.
Paraquat adsorption, degradation, and remobilization were investigated in representative tropical soils of Yom River Basin, Thailand. Adsorption of paraquat in eight soil samples using batch equilibration techniques indicated that adsorption depended on soil characteristics, including exchangeable basic cations and iron content. Multiple regression analysis indicated significant contribution of exchangeable calcium percentage (ECP), total iron content (TFe) and exchangeable sodium percentage (ESP) to paraquat sorption (Q). ESP and TFe were significant at all adsorption stages, whereas ESP was significant only at the initial stage of paraquat adsorption. Adsorption studies using two soils representing clay and sandy loam textures showed that paraquat adsorption followed the Freundlich model, exhibiting a nonlinear sorption curve. Paraquat adsorption was higher in the clay soil compared to the sandy loam soil with Kf values of 787 and 18, respectively. Desorption was low with 0.04 to 0.17% and 0.80 to 5.83% desorbed in clay and sandy loam soil, respectively, indicating some hysteresis effect. Time-dependent paraquat adsorption fitted to the Elovich kinetic model indicated that diffusion was a rate-limiting process. Paraquat mobility and degradation studies conducted using both field and laboratory soil column experiments with clay soil showed low mobility of paraquat with accumulation only in the surface 0-5 cm layer under field conditions and in the 0-1 cm layer in a laboratory soil column experiment. Degradation of paraquat in soil was faster under field conditions than at ambient laboratory conditions. The degradation rate followed a first-order kinetic model with the DT50 at 36-46 days and DT90 around 119-152 days.  相似文献   

5.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT(50) values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

6.
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha?1) and Merlin Gold (1 L ha?1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L?1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L?1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L?1), while diketonitrile was detected in concentrations above 0.1 µg L?1 on 1 DAT in 2011 only.  相似文献   

7.
Two racemic herbicides, mecoprop (R,S-MCPP) and dichlorprop (R,S-DCPP), as well as their enantiopure R-forms, were incubated in three calcareous soils at 15 degrees C and 80% of their field capacity to try to elucidate their behaviour in soil and compare the dissipation rates when racemic and enantiopure compounds are used. Quantitation of pesticides is made by HPLC and the R/S ratio by GC-MS. The inactive S-enantiomer from the racemic forms persists longer than the R-forms in silt and sandy loam soils, but for shorter time in the clay loam soil. The pure R-enantiomers, both for MCPP and DCPP, after incubation in soil, are partially converted into their S-forms. In all cases, the dissipation of racemic and pure enatiomeric forms is lower in the clay loam soil than in the silt and sandy loam soils. The R-forms' peristence, in the three soils, is approximately two times lower when they are incubated alone than when they are incubated as racemic compounds. When peat is added, the persistence of these herbicides in the silt and sandy loam soils increases, while in the clay loam soil it decreases. Besides, in the clay loam soil, the enantiomeric ratio (ER) changes from its S-preferential degradation to a preferential degradation of its R-form, so an increase in the persistence of the inactive S-form occurs.  相似文献   

8.
The behavior of methyl isothiocyanate (MITC), active metabolite of metam-sodium (MS), was studied under field conditions in Morocco. MS was applied through drip irrigation in: (i) uncovered soil, (ii) soil covered with transparent polyethylene, and (iii) soil covered with virtual impermeable film. Concentrations of MITC were determined at different soil depths to determine the distribution of MITC and the concentration-time product (CTP). Six hours after MS application, in a sandy soil, MITC reaches the 20-30 cm soil layer, but remains highly concentrated in the upper 10-20 cm soil layer. In a silty clay soil, MITC was concentrated in the upper 0-10 cm soil layer. The dissipation of MITC under different conditions of application was fast and complete after seven days. However, MITC dissipation time (DT(50)) was <24 h in sandy soil treated, but 63 h in silty clay soil. Under these application conditions of MS, the plastic film reduced MITC loss to the atmosphere but the plastic film quality did not affect the behavior of MITC. The use of plastic film maintained high MITC concentrations and appropriate CTP at different soil depths.  相似文献   

9.
This study was conducted to evaluate atrazine (2-chloro-4-ethylamino-6-isopropyl-1,3,5-triazine) and alachlor (2-chloro-N-(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 microg L(-1)). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   

10.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha? 1. Terbuthylazine was applied to both plots at a rate of 2 kg ha? 1 a.i. Triplicates from each plot were sampled at 3 depths (0–10, 10–20 and 20–30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

11.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha(- 1). Terbuthylazine was applied to both plots at a rate of 2 kg ha(- 1) a.i. Triplicates from each plot were sampled at 3 depths (0-10, 10-20 and 20-30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

12.
Movement of metolachlor and terbuthylazine in core and packed soil columns   总被引:2,自引:0,他引:2  
Singh N  Kloeppel H  Klein W 《Chemosphere》2002,47(4):409-415
Movement of metolachlor and terbuthylazine including a bromide tracer was studied in core and packed soil columns in PVC pipes (80 mm diameter, 15 mm depth) with two German soil types viz: silt loam and loamy silt. The breakthrough curves (BTCs) for bromide indicated some preferential flow of water both under conventional tillage (CN) and no-till (NT) simulation with silt loam soil. The herbicides leached to a greater extent in NT columns than in CN columns. Leaching was higher in loamy silt soil than in silt loam soil under CN conditions. This result is in agreement with the higher sorption capacity of silt loam having higher organic carbon compared to loamy silt having low organic carbon. Adsorption strength of the herbicides did not affect their breakthrough time, but was reflected in the slope and maximum height of the BTCs. The BTCs showed the expected inverse relationship between leaching and adsorption with greater mobility of the weakly-sorbed metolachlor than the more strongly sorbed terbuthylazine. Maximum amounts of the applied herbicides were recovered from the top soil layer in intact columns. Metolachlor was more mobile in packed columns than in core columns.  相似文献   

13.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

14.
This study reports the influence of sugar cane vinasse on the persistence, sorption and leaching potential of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), hexazinone (3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4-dione) and tebuthiuron (1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-1,3-dimethylurea) in both a clay and sandy soil from a tropical area of Brazil. The experiments were conducted out under controlled laboratory conditions. The addition of sugarcane vinasse to soil influenced the persistence and sorption of the herbicides in both the studied clay and sandy soils, with a considerable decrease in the diuron DT50 values in clay soil. The Ground Water Ubiquity Score (GUS) Index classifies the herbicides as leachers in both soils and treatments, with the exception of diuron, which is classified as a non-leacher in clay soil-vinasse and as a transient herbicide in sandy soil. These results suggest that special attention should be given to areas such as those where the sandy soil was collected in this study, which is a recharge area of the Guarani Aquifer and is likely to experience groundwater contamination due to the high leaching potential of the applied pesticides.  相似文献   

15.
Narrow vegetative filter strips proved to effectively reduce herbicide runoff from cultivated fields mainly due to the ability of vegetation to delay surface runoff, promote infiltration and adsorb herbicides. A field trial was conducted from 2007 to 2009 in north-east Italy in order to evaluate the effectiveness of various types of vegetative filter strips to reduce spring-summer runoff of the herbicides mesotrione, metolachlor and terbuthylazine, widely used in maize, and to evaluate the effect of the rainfall characteristics on the runoff volume and concentration. Results show that without vegetative filter strip the herbicide load that reaches the surface water is about 5-6 g ha−1 year−1 for metolachlor and terbuthylazine (i.e. 0.5-0.9% of the applied rate), confirming that runoff from flat fields as in the Po Valley can have a minor effect on the water quality, and that most of the risk is posed by a few, or even just one extreme rainfall event with a return period of about 25-27 years, causing runoff with a maximum concentration of 64-77 μg L−1. Mesotrione instead showed rapid soil disappearance and was observed at a concentration of 1.0-3.8 μg L−1 only after one extreme (artificial) rainfall. Vegetative filter strips of any type are generally effective and can reduce herbicide runoff by 80-88%. Their effectiveness is steady even under severe rainfall conditions, and this supports their implementation in an environmental regulatory scheme at a catchment or regional scale.  相似文献   

16.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

17.
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL?1. The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL?1. Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1–25.3%, 9.4–20.7% and 8.1–13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25–0.30) and clay fraction removed soil (0.28–0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible.  相似文献   

18.
In this work the degradation of the herbicides metolachlor, diuron, monuron and of the metabolites 2-ethyl-6-methylaniline (EMA), and 3,4-dichloroaniline (DCA) was assessed in laboratory experiments on microbiologically active and sterilized soils. Their leaching potentials were calculated, using Gustafson's equation, by determining their mobility (as Koc) and persistence (expressed as DT50). Lysimeter experiments were also conducted to assess the actual leaching of the studied herbicides in a cereal crop tillage area vulnerable to groundwater contamination. The data obtained from the field were compared to the laboratory results. Moreover, some compounds of particular concern were searched for in the groundwater located near the experimental area in order to evaluate actual contamination and to test the reliability of the leaching potential. The GUS index, computed on data from microbiologically active soil, shows monuron as a leacher compound, EMA and DCA as non-leachers, metolachlor and diuron as transient ones. The presence of metolachlor in the groundwater monitored, even at concentrations up to 0.1 mug/l, confirms the possibility that transient compounds can be leached if microbial activity has not completely occurred in active surface soil.  相似文献   

19.
Abstract

Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of “rainfall”; reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.  相似文献   

20.
The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40 degrees C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K(d)) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号