首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
The rate and extent of accumulation and washout of arsenic, during daily oral administration of the herbicide monosodium methanearsonate (MSMA) were evaluated in Iranian dairy sheep and goats. Subjects received a dose of 10 mg of MSMA as arsenic per kg of body weight daily for 28 consecutive days. The total arsenic concentration in blood and milk was measured during and after the period of MSMA administration while arsenic in urine and feces was measured for 10 days following administration of last dosage of MSMA. Arsenic was accumulated slowly during 28 days of MSMA administration and steady states were essentially complete in sheep after 20 days and in goats following 25 days of MSMA administration. Blood arsenic concentration decreased rapidly after termination of MSMA administration. In both test animals, the half-lives of washout were smaller than accumulation. The concentration of arsenic in the urine and feces of both species did not increase significantly over controls and animals were free of arsenic relatively shortly after administration stopped. These data indicate that arsenic from MSMA is mainly absorbed from gastrointestinal tract and is not significantly accumulated in the body. Arsenic is eliminated from body by way of urine and feces with urinary excretion being the most important route.  相似文献   

2.
Abstract

Iranian fat‐tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae αt + Be ‐βt ‐ C°be‐kat.

Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two‐compartment model.

Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels.

The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.  相似文献   

3.
Iranian fat-tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae- alpha t + Be- beta t - C degrees be-kat. Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two-compartment model. Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels. The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.  相似文献   

4.
Abstract

Monosodium methanearsonate (MSMA)-resistant and -susceptible common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) were treated with MSMA. Plant parameters analyzed were: glutathione synthetase activity, selected amino acid (arginine, glutamic acid, alanine, citrulline, glutamine, and glutathione) content and arsenic content (MSMA, total arsenic, and arsonate). No reduction of arsenic from the parent pentavalent form present in MSMA to the trivalent form was detected. Arginine, glutamic acid, and glutamine content increased in tissue three days after MSMA treatment. Glutathione content decreased during the first three days after treatment; however, five days after treatment the resistant biotype of cocklebur and cotton had elevated glutathione levels (8–20 times greater, respectively). Glutathione Synthetase activity was higher in cotton than in either of the cocklebur biotypes; MSMA did not affect its activity in cotton or either cocklebur biotype. Resistant biotypes have a slightly higher activity than the susceptible biotype. Tolerance of cotton to MSMA may be related to glutathione synthetase activity and possibly to the presence of phytochelatins. Also, increased glutathione levels in the resistant biotype may implicate phytochelatin involvement in the resistance mechanism.  相似文献   

5.

Arsenic accumulation in vegetables for direct human consumption represents a concern for food safety purposes. This potential problem can be of economic importance particularly in much appreciated, high-quality horticultural products. In this work, a greenhouse set of experiments were conducted to evaluate possible phytotoxic effects and arsenic accumulation in the production of curly endives with arsenic contaminated water.

Two concentration levels (0.5 mg/L and 1.0 mg/L) and two arsenic species (As+3 and As+5) were considered. Dry mass production tended to be reduced as As+3 concentration increased in irrigation water. However, As+5 treatments did not show significant dry mass production differences with a blank (control experiment). As accumulation in plant increased with As concentration in irrigation waters, following a linear trend. Nevertheless, the increase of accumulated As was not statistically significant for As+5 at 0.5 mg/L. Calculated biological absorption coefficients resulted in higher than previous values reported in the literature, which was attributed here to the source of arsenic (irrigation water). Considering field values for As+5/As+3 ratio and averaged concentrations in water, the obtained results support that there is not a short-or medium-term risk to food safety in the curly endive crop in the region of Castilla y León (Spain).  相似文献   

6.
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.  相似文献   

7.
Monosodium methanearsonate (MSMA)-resistant and -susceptible common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) were treated with MSMA. Plant parameters analyzed were: glutathione synthetase activity, selected amino acid (arginine, glutamic acid, alanine, citrulline, glutamine, and glutathione) content and arsenic content (MSMA, total arsenic, and arsonate). No reduction of arsenic from the parent pentavalent form present in MSMA to the trivalent form was detected. Arginine, glutamic acid, and glutamine content increased in tissue three days after MSMA treatment. Glutathione content decreased during the first three days after treatment; however, five days after treatment the resistant biotype of cocklebur and cotton had elevated glutathione levels (8-20 times greater, respectively). Glutathione Synthetase activity was higher in cotton than in either of the cocklebur biotypes; MSMA did not affect its activity in cotton or either cocklebur biotype. Resistant biotypes have a slightly higher activity than the susceptible biotype. Tolerance of cotton to MSMA may be related to glutathione synthetase activity and possibly to the presence of phytochelatins. Also, increased glutathione levels in the resistant biotype may implicate phytochelatin involvement in the resistance mechanism.  相似文献   

8.

Leaf cuticle waxes were extracted from monosodium methanearsonate (MSMA)-resistant (R) and -susceptible (S) common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) plants at 0, 3, 5, and 7 days after treatment (DAT) following 1× and 2× MSMA applications. Wax constituents were analyzed by gas chromatography (GC) with flame ionization detection and compared to alkane and alcohol standards of carbon lengths varying from C21 to C30. Differences in waxes were calculated and reported as change per ng mm2–1. Tricosane (C23) was found to increase following MSMA applications. All other alkanes decreased by 7 DAT, with some showing a linear effect over time in the R-cocklebur. Alcohol constituents were also observed to decrease by 7 DAT. Total arsenic in the extracted wax fraction was determined, with greatest quantities detected in the R-cocklebur. Wax changes are not believed to play a role in cotton tolerance, since changes in cuticle concentrations were minimal. Cocklebur resistance to MSMA is not due to cuticle constituents; the wax changes are a secondary effect in response to herbicide application.  相似文献   

9.
Abstract

The fate of ochratoxin A (OA) was studied in goats given a single oral dose of 3H‐OA (0.5 mg/kg). More than 90% of the radioactivity was found to be excreted in 7 days and the majority (53%) was found in feces. Thirty‐eight percent, 6% and 2.26% of the activity was found in urine, milk and serum, respectively. The radioactivity in the liver and kidney 6 hours after feeding amounted to 1.5 and 0.5% of the total dose administered, respectively. Subsequent fractionation of liver and kidney homogenates revealed that microsomes, ribosomes and post‐ribosomal supernatant fractions contained most radioactivity. Thin layer chromatographic analyses revealed two additional radioactive spots with Upvalues and fluorescent characteristics different from OA, Oα and 4‐OH‐OA. Whereas OA was found as the unaltered molecule in feces, the metabolites were primarily found in urine and milk. Less than 0.03% of free OA was found in milk during the 7‐day period.  相似文献   

10.
Arsenic concentrations were determined in livers of 226 individuals representing 16 different marine mammal species to elucidate its accumulation with age, sex, and feeding habits. Arsenic concentrations varied widely among species and individuals, and ranged from < 0.10 to 7.68 micrograms g-1 dry weight. Marine mammals feeding on cephalopods and crustaceans contained higher arsenic concentrations than those feeding on fishes. No significant gender difference in arsenic concentration was found for almost all the species. Also, no apparent trend with age (or body length) in arsenic accumulation was found for most of the species. It was noted that two seal species, Baikal seal and Caspian seal, from landlocked water environments, contained lower arsenic concentrations than the marine species. To our knowledge, this is the first comprehensive study of arsenic accumulation in a wide range of marine mammal species.  相似文献   

11.
Arsenic (As) as a major hazardous metalloid was affected by phytoplankton in many aquatic environments. The toxic dominant algae Microcystis aeruginosa was exposed to different concentrations of inorganic arsenic (arsenate or arsenite) for 15 days in BG11 culture media. Arsenic accumulation, toxicity, and speciation in M. aeruginos as well as the changes of As species in media were examined. M. aeruginosa has a general well tolerance to arsenate and a definite sensitivity to arsenite. Additionally, arsenate actively elevated As methylation by the algae but arsenite definitely inhibited it. Interestingly, the uptake of arsenite was more pronounced than that of arsenate, and it was correlated to the toxicity. Arsenate was the predominant species in both cells and their growth media after 15 days of exposure to arsenate or arsenite. However, the amount of the methylated As species in cells was limited and insignificantly affected by the external As concentrations. Upon uptake of the inorganic arsenic, significant quantities of arsenate as well as small amounts of arsenite, DMA, and MMA were produced by the algae and, in turn, released back into the growth media. Bio-oxidation was the first and primary process and methylation was the minor process for arsenite exposures, while bioreduction and the subsequent methylation were the primary metabolisms for arsenate exposures. Arsenic bioaccumulation and transformation by M. aeruginosa in aquatic environment should be paid more attention during a period of eutrophication.  相似文献   

12.
Wei CY  Chen TB 《Chemosphere》2006,63(6):1048-1053
In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.  相似文献   

13.
Abstract

Crystalline zearalenone was administered to young female pigs at dose levels of 0, 3.5, 7.5 and 11.5 mg zearalenone/kg body weight. All animals receiving the mycotoxin exhibited vulva vag‐initis and had enlarged reproductive tracts, 1 week after dosing. Free zearalenone was found in the blood, feces and urine of dosed animals. The highest zearalenone level detected was 2.61 ng/ml from a pig that received the 7.5 mg/kg dose. After 24 hours, feces collected contained on average up to 308 ng zearalenone per g of dried feces. Zearalenone levels of up to 59 ng/ml, and a ‐zearalenol levels of up to 155 ng/ml urine were found. ß ‐zearalenol was also detected in the urine.  相似文献   

14.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   

15.

Arsenic (As) gets accumulated in plants via phosphorous transporters and water channels and interferes with nutrient and water uptake, adversely affecting growth and productivity. Although, Si and AM have been reported to combat arsenic stress, their comparative and interactive roles in ameliorating As V and As III toxicities have not been reported. Study evaluated effects of Si and Rhizophagus irregularis on growth, As uptake and yield under arsenate and arsenite stress in two pigeonpea genotypes (metal tolerant—Pusa 2002 and metal sensitive—Pusa 991). Higher As accumulation and translocation was observed in As III treated roots of Pusa 991 than those of Pusa 2002 when compared with As V. Roots were more negatively affected than shoots which led to a significant decline in nutrient uptake, leaf chlorophylls, and yield, with As III inducing more negative effects. Pusa 2002 established more effective mycorrhizal symbiosis and had higher biomass than Pusa 991. Si was more effective in inducing shoot biomass while AM inoculation significantly improved root biomass. AM enhanced Si uptake in roots and leaves in a genotype dependent manner. Combined application of Si and AM were highly beneficial in improving leaf water status, chlorophyll pigments, biomass, and productivity. Complete amelioration of negative impacts of both concentrations of As V and lower concentration of As III were recorded under +Si +AM in Pusa 2002. Results highlighted great potential of Si in improving growth and productivity of pigeonpea through R. irregularis under As V and As III stresses.

  相似文献   

16.
Inorganic arsenic (InAs) is a ubiquitous metalloid that has been shown to exert multiple adverse health outcomes. Urinary InAs and its metabolite concentration has been used as a biomarker of arsenic (As) exposure in some epidemiological studies, however, quantitative relationship between daily InAs exposure and urinary InAs metabolites concentration has not been well characterized. We collected a set of 24-h duplicated diet and spot urine sample of the next morning of diet sampling from 20 male and 19 female subjects in Japan from August 2011 to October 2012. Concentrations of As species in duplicated diet and urine samples were determined by using liquid chromatography-ICP mass spectrometry with a hydride generation system. Sum of the concentrations of urinary InAs and methylarsonic acid (MMA) was used as a measure of InAs exposure. Daily dietary InAs exposure was estimated to be 0.087 µg kg?1 day?1 (Geometric mean, GM), and GM of urinary InAs+MMA concentrations was 3.5 ng mL?1. Analysis of covariance did not find gender-difference in regression coefficients as significant (P > 0.05). Regression equation Log 10 [urinary InAs+MMA concentration] = 0.570× Log 10 [dietary InAs exposure level per body weight] + 1.15 was obtained for whole data set. This equation would be valuable in converting urinary InAs concentration to daily InAs exposure, which will be important information in risk assessment.  相似文献   

17.
Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg−1 dry weight of arsenic when exposed to 40 μM for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa.  相似文献   

18.
Arsenic accumulation in vegetables for direct human consumption represents a concern for food safety purposes. This potential problem can be of economic importance particularly in much appreciated, high-quality horticultural products. In this work, a greenhouse set of experiments were conducted to evaluate possible phytotoxic effects and arsenic accumulation in the production of curly endives with arsenic contaminated water.Two concentration levels (0.5 mg/L and 1.0 mg/L) and two arsenic species (As+3 and As+5) were considered. Dry mass production tended to be reduced as As+3 concentration increased in irrigation water. However, As+5 treatments did not show significant dry mass production differences with a blank (control experiment). As accumulation in plant increased with As concentration in irrigation waters, following a linear trend. Nevertheless, the increase of accumulated As was not statistically significant for As+5 at 0.5 mg/L. Calculated biological absorption coefficients resulted in higher than previous values reported in the literature, which was attributed here to the source of arsenic (irrigation water). Considering field values for As+5/As+3 ratio and averaged concentrations in water, the obtained results support that there is not a short-or medium-term risk to food safety in the curly endive crop in the region of Castilla y León (Spain).  相似文献   

19.
Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed ‘root + plaque’ material in excess of 1000 mg kg−1, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.  相似文献   

20.
The main objective of this study was to evaluate whether arsenic accumulated in the edible pods and seeds of Phaseolus vulgaris, cv. Helda, above the Spanish maximum recommended concentration for food crops, 1 mg kg?1 on a fresh weight basis. Only organic arsenicals were used because they are: a) the only arsenic species allowed for agricultural applications and b) more mobile than inorganic species. Selection of French beans, a sensitive plant to arsenic, was based on the fact that arsenic upward translocation is higher in sensitive than in tolerant plants. A 2 × 3 factorial experiment was conducted with two organic arsenic species: methylarsonic acid (MAA) or dimethylarsinic acid (DMAA) and three arsenic concentrations: 0.2, 0.5, or 1.0 mg L?1. Arsenic phytotoxicity was primarily determined by soluble arsenic concentration. Experimental results showed that the low bean plant tolerance to arsenic is possibly due to the high arsenic upward transport to shoots, which could result in profound negative metabolic consequences. Even under extremely adverse conditions, arsenic residues in edible beans were below the maximum statutory limit set by the Spanish legislation. It can be concluded that the major danger of organic arsenical herbicides is that of decreased productivity rather than high arsenic uptake by consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号