首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

2.
Abstract

The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N, N‐diethyl‐2‐(1‐naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption‐desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300–450 nm wavelenght with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter *content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

3.
正确预测有机污染物在环境中的归宿 ,在很大程度上依赖对它们的吸着 -解吸动力学行为的认识。自 2 0世纪 80年代起 ,吸着 -解吸动力学逐渐受到重视。本文介绍了国内外有关农药在土壤 /沉积物上的吸着 -解吸动力学和吸着 -解吸对土壤有机污染物的生物利用率的影响等方面的近期研究成果 ,着重从实验方法、模型、机理等方面进行了详细的综述  相似文献   

4.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

5.
Abstract

The sorption and desorption of diuron by soil samples from Horizons A and B (HA and HB) and by their different clay fractions were investigated, using two soil samples, classified as Typic Argiudoll and Oxic Argiudoll. The sorption and desorption curves were adjusted to the Freundlich model and evaluated by parameters Kf, Kd and Koc. Based on the data of groundwater ubiquity score (GUS), leachability index (LIX) and hysteresis index (HI), the risk of groundwater pollution was evaluated. The Kd values obtained for soil samples were between 4.5?mL g?1 (Oxic Argiudoll – HB) and 15.9?mL g?1 (Typic Argiudoll – HA) and between 1.13 and 14.0?mL g?1 for the different mineral fractions, whereas the Koc values varied between 276 (Oxic Argiudoll – HB) and 462 (Typic Argiudoll – HA). According to the parameter GUS, only Oxic Argiudoll – HB presented leaching potential, and based on the LIX index this same soil presented the highest leaching potential. Some samples presented low LIX and GUS values, indicating no leaching potential, but none presented HI results indicative of hysteresis, suggesting weak bonds between diuron and the soil samples and, hence, the risk of groundwater pollution by diuron.  相似文献   

6.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

7.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

8.
Surface water bodies may become contaminated via spray drift following pesticide application. In this investigation, the photodegradation and sorption of chlorpyrifos was studied in four riparian macrophytes representative of Mediterranean flora (Phragmites australis, Iris pseudacorus, Equisetum pratense and Typha latifolia). The results of experiments with both the active ingredient and the formulation DURSBAN 48® EC confirm the ability of these species to interact with chemicals such as chlorpyrifos. The maximum sorption of chlorpyrifos at equilibrium was observed in Phragmites australis (22%). And, the maximum instantaneous sorption of chlorpyrifos was observed in the dried biomass of Phragmites australis (49%). The epicuticular waxes present on leaves influence photodegradation processes, resulting in a decrease in chlorpyrifos persistence depending on the nature of the extract. The half-life of chlorpyrifos residues in leaf waxes decreased from 34 to 99 minutes when irradiated.  相似文献   

9.
粘土矿物与重金属界面反应的研究进展   总被引:1,自引:0,他引:1  
介绍了3种粘土吸附剂:蒙脱石、高岭石和伊利石对重金属的吸附、脱附等界面反应机理,以及粘土矿物对重金属的选择性及对吸附的影响因素.另外,还探讨了为提高其吸附性能而进行的改性方法.  相似文献   

10.
以钙基膨润土为原料,钠化后用溴化十六烷基三甲铵(CTMAB)进行有机改性,制得有机膨润土。在单因素吸附实验的基础上,采用L16(4^4)正交实验法对有机膨润土吸附水中苯胺的工艺条件进行了优化研究。结果表明,当矿物的粒径小于74/μm、振荡速度为150r/min、吸附液为25mL,并且以此三者为固定因素时,其优化工艺条件为有机膨润土投加量2.0g,温度40℃,pH7,吸附时间1.5h。  相似文献   

11.
粘土矿物与重金属界面反应的研究进展   总被引:14,自引:0,他引:14  
介绍了3种粘土吸附剂:蒙脱石、高岭石和伊利石对重金属的吸附、脱附等界面反应机理,以及粘土矿物对重金属的选择性及对吸附的影响因素。另外,还探讨了为提高其吸附性能而进行的改性方法。  相似文献   

12.
以钙基膨润土为原料,钠化后用溴化十六烷基三甲铵(CTMAB)进行有机改性,制得有机膨润土。在单因素吸附实验的基础上,采用L16(44)正交实验法对有机膨润土吸附水中苯胺的工艺条件进行了优化研究。结果表明,当矿物的粒径小于74μm、振荡速度为150 r/m in、吸附液为25 mL,并且以此三者为固定因素时,其优化工艺条件为有机膨润土投加量2.0 g,温度40℃,pH 7,吸附时间1.5 h。  相似文献   

13.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

14.
利用十六烷基三甲基溴化铵对天然蒙脱土进行改性,并用聚乙烯醇对改性蒙脱土进行固定化处理,然后进行柱状吸附和振荡条件的吸附试验。研究结果表明,HDTMA改性蒙脱土固定化后能有效吸附苯酚,不同环境条件对苯酚的柱状吸附能力产生不同的影响。在pH4~8的范围内,固定化改性蒙脱土对苯酚的吸附效果无显著性差异,pH在10以上,其吸附能力明显下降;温度对吸附效果影响不大;进水苯酚浓度越高,改性蒙脱土对苯酚的吸附量越大,但出水苯酚浓度也高;苯酚的流速越小,吸附容量越高,吸附效果越好。  相似文献   

15.

Sorption of the estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL?1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL?1 and reached levels ≥80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   

16.
Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31–22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94–83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (Kf.1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g?1) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).  相似文献   

17.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15–92%, whereas with the Kota fly ash an increase in sorption by 13–38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to Kf/Kd values, KFA values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

18.
Sorption kinetic characteristics of BDE-28 and BDE-47 on five natural soils with different organic carbon fractions were investigated, and could be satisfactorily described by a two (fast and slow)-compartment first-order model with the ratio of rate constants ranged from 9 to 94 times. The fast compartment made a dominant contribution (71% ∼ 94%) to the total sorption amount in the whole process, and accounted for over 90% of the increase in the total sorption amount at initial 5 h. The influence of the slow compartment on the increase in the total sorption amount became principal (above 90%) in the subsequent stage approximately from 9 h or 25 h to the apparent equilibrium at 265 h. The results proposed the different sorption behaviors of the mathematically classified compartments for BDE-28 and BDE-47, which may correspond to the different soil components, such as soil organic fractions with amorphous and condensed structures, respectively.  相似文献   

19.
用热处理方法对泥炭进行活化改性,探讨了对甲苯的吸附性能及影响因素,并研究了甲苯在泥炭上的吸附/解吸行为。结果表明,粒径在0.6~1 mm之间的泥炭在160℃热处理5 h,在pH为7的条件下对甲苯有良好的吸附效果,对甲苯的吸附量为0.32 mg/g。泥炭对甲苯的吸附在20 min内基本达到平衡,可用二级吸附速率方程进行拟合。甲苯在泥炭上的吸附和解吸均呈现明显的非线性,用Langmuir模型能较好地描述,泥炭对甲苯的饱和吸附量为0.939 mg/g。甲苯在泥炭上的平均解吸率为6.393%,并且出现了滞后现象,表明苯系物与泥炭有较强的结合能力。研究结果为应用泥炭作为PRB装填介质进行原位修复甲苯污染的地下水提供了理论依据。  相似文献   

20.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with Kf (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The Kf for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号