首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The research was carried out in order to verify the influence that light, oxygen, and microbial activity have on the degradability of pyrimethanil (PYR) in soil. The products of degradation were also identified and their evolution in time evaluated. The results indicate that the molecule is more persistent in the absence of light, oxygen, and microbial activity. The order of importance of these three factors is as follows: light < microbial activity < oxygen. The following products of degradation were identified: (1) benzoic acid, (2) cis,cis-muconic acid, (3) hydroxyl-4,6-dimethyl-2-pirimidinamine, (4) N′-ethyl-N-hydroxyformamidine, and (5) 4,6-dimethyl-2-piridinamine, which appeared different from those reported in literature for the degradation of PYR in abiotic conditions. This result suggests that the degradation in soil is mainly biotic.  相似文献   

2.
Abstract

The degradation of [phenyl‐U‐14C]methabenzthiazuron (MBT) and formation of bound residues in the surface soil of an orthic luvisol were studied under constant climatic conditions (20°C, 40 % of maximum water holding capacity). In two treatments (with and without preincubation in the soil) maize straw was amended at a rate of 1.5 g/100 g dry soil in addition to the application of MBT. The mineralization of uniformly labeled maize straw was studied simultaneously. In additional flasks, MBT was incubated at 0, 10 and 30°C with and without addition of maize straw.

The turnover of the amended maize straw led to an enhanced dissipation of MBT which was mainly due to the formation of bound residues. This corresponded to a higher microbial activity in the soil after straw amendment and the intensive mineralization of the radiolabeled maize straw. About 2–3 % of the applied radioactivity from the radiolabeled maize straw was measured in the soil microbial biomass 10 and 40 days after application whereas 14C from MBT was only incorporated into soil microbial biomass in the treatments with straw amendment.

Within the bound residue fractions relatively more radioactivity was measured in fulvic and humic acids after straw amendment. Increasing temperatures promoted the dissipation of MBT and the formation of bound residues in both treatments, but without amendment of maize straw these effects were far less pronounced. The laboratory scale degradation experiment led to similar results as were found in a corresponding lysimeter study. Differences that were observed could be explained by different temperature regimes of the experiments and time of aging in soil.  相似文献   

3.
Abstract

Spinosad is a natural product with biological activity against a range of insects including lepidoptera. It is comprised of two major components namely spinosyns A and D. The degradation of spinosad in soil under aerobic conditions was investigated using two U.S. soils (a silt loam and a sandy loam) which were treated with either 14C‐spinosyn A or ‐spinosyn D at a 2X use rate of 0.4mg/kg soil for spinosyn A and 0.1mg/kg for spinosyn D. Further samples of soil were pre‐sterilised prior to treatment in order to establish whether spinosyns A and D degrade abiotically. Flasks of treated soil were incubated in the dark at 25°C for up to one year after treatment.

HPLC and LC‐MS of soil extracts confirmed that the major degradation product of spinosyn A was spinosyn B, resulting from demethylation on the forosamine sugar. Other dégradâtes were hydroxylation products of spinosyns A and B, with hydroxylation probably taking place on the aglycone portion of the molecule. Half lives were similar for both spinosyns and were in the range 9–17 days, with longer half lives in the pre‐sterilised soils (128–240 days) suggesting that degradation was largely microbial.  相似文献   

4.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

5.
Abstract

The degradation of profluralin [N‐(cyclopropylmethyl)‐α,α,α‐trifluoro‐2,6‐dinitro‐N‐propyl‐]p‐toluidine] and trifluralin (α,α,α‐trifluoro‐2,6‐dinitro‐N,N‐dipropyl‐p‐toluidine) was studied under aerobic and anaerobic soil conditions. Three soils (Goldsboro loamy sand, Cecil loamy sand, Drummer clay loam) were each treated with 1 ppmw herbicide; anaerobic conditions were maintained by flooding. Soil samples were extracted monthly and subjected to TLC analysis. No degradation was detected in sterile controls. Aerobic degradation of both herbicides was greatest in the Cecil loamy sand soil over the entire incubation period. Degradation of profluralin in Cecil soil under aerobic conditions was 86 percent after 4 months with three products detected; 83 percent of the trifluralin was degraded with two products detected. Anaerobic degradation accounted for 72 percent of the profluralin and 78 percent of the trifluralin after 4 months. Degradation of both herbicides increased with incubation time for the first 3 months and decreased slightly thereafter. Generally there was more extensive degradation (percent and in number of products formed) of profluralin than trifluralin under the conditions tested. More degradation products were detected for both herbicides under aerobic conditions than under anaerobic conditions.  相似文献   

6.
Abstract

The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd‐1 and 25 ngd‐1, respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd‐1 and 32.5 ngd‐1, respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd‐1 and 12.0 ngd‐1 for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd‐1 and 5.35 ngd‐1. Metribuzin degraded faster (12.0 ngd‐1) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd‐1).  相似文献   

7.
Abstract

The potential for dechlorinating 2,4‐dichlorophenoxyacetic acid (2,4‐D) and 2,4,5‐trichlorophenoxyacetic acid (2,4,5‐T) in soil with a consortium showing stable dechlorinating activity was investigated. The effects of adding electron donors and/or acceptors under three anaerobic reducing conditions was compared. Results show that both 2,4‐D and 2,4,5‐T dechlorination rates were enhanced in methanogenic conditions, delayed in sulfate‐reducing conditions, and inhibited in denitrifying conditions. Also under the same three conditions dechlorination was be enhanced by the addition of lactate, pyruvate, and acetate, delayed by the addition of manganese oxide and vitamin B12, and inhibited by the addition of ferric chloride. Response to treatment with such microbial inhibitors as bromoethane sulfonic acid (BESA), vancomycin, and molybdate suggests that the major bacteria involved in 2,4‐D and 2,4,5‐T dechlonnation is methanogen followed joined by sulfate‐reducing bacteria and eubacteria.  相似文献   

8.
Abstract

A laboratory study was conducted to examine the degradation of terbutryn [2‐(t‐butylamino)‐4‐(ethylamino)‐6‐(methylthio)‐s‐triazine] in sediment and water under different redox conditions. Terbutryn degraded slowly in static aerobic systems (loosely capped flask, 25°C) with half‐lives of 240 and 180 days in pond and river sediment, respectively. Degradation products, identified by co‐chromatography on TLC and HPLC systems, included hydroxy‐terbutryn, terbutryn‐sulfoxide and N‐deethyl terbutryn. Hydroxyterbutryn was the major degradation product in sediments and water representing 60–70% of the extractable radioactivity after 515 days incubation. Under nitrogen aeration in respirometer flasks (redox potential ‐46 to +210 mv) degradation of terbutryn was very slow with half lives greater than 650 days.  相似文献   

9.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

10.
Abstract

Azadirachtin‐A on exposure to UV‐light (254 nm) as a thin film on glass surface gave a isomerised (Z)‐2‐ methylbut‐2‐enoate product. Half‐life of azadirachtin‐A as thin film under UV light was found to be 48 min. Azadirachtin ‐A was irradiated along with saturated and unsaturated fatty acids, and fatty oils under ultra‐violet light as thin film. Saturated fatty acid increased the rate of photodegradation of azadirachtin‐A, whereas unsaturated fatty acids such as oleic, linoleic and elaidic acid reduced the rate of degradation. Castor, linseed and olive oil accelerated the rate of degradation, whereas neem oil showed no or little change in the rate of degradation of azadirachtin‐A. None of these fatty acids and fatty oils were effective in controlling the rate of degradation of azadirachtin‐A under UV‐light as thin film.  相似文献   

11.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

12.
Abstract

The degradation of α and β isomers of endosulphan and endosulphan sulphate in four sterilized and non sterilized Indian soils under laboratory conditions was studied. Degradation was found to be more in non‐sterilized as compared to the sterilized soil. The half life of α‐endosulphan, β‐endosulphan and endosulphan sulphate was found to be 136.8, 273 and 301 days in sterilized Alfisol and 55, 256 and 277 days in non‐sterilized Alfisol, respectively. α‐Endosulphan degraded more readily than β‐endosulphan and endosulphan sulphate under both sterilized and non‐sterilized soil conditions.  相似文献   

13.
Abstract

Degradation of diuron [3‐(3,4‐dichlorophenyl)‐l,1‐dimethyl‐urea] by microorganisms obtained from pond water and sediment was determined under aerobic conditions. Enrichment procedures were used to isolate cultures capable of degrading the herbicide. Several mixed fungal/bacterial and mixed bacterial cultures were isolated that could degrade diuron. The mixed cultures degraded 67–99% of the added diuron forming from six to seven products which were separated via TLC. The major degradation product detected in most culture extracts was 3,4‐dichloroaniline. Other identified products formed were 3‐(3,4‐dichlorophenyl)‐1‐methylurea and 3‐(3,4‐dichlorophenyl)urea.  相似文献   

14.
Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.  相似文献   

15.
Abstract

Dissipation of 14C‐p,p'‐DDT from water was studied for 180 days under outdoor conditions. DDT dissipated rapidly with overall half‐life of 53 days. The main degradation products were p,p'‐DDE and p,p'‐DDD. A portion of 14C‐residues was found in the sediment plus biomass (pellet) and on the inner surface of the glass container. This amounted to 7.2 and 6.7% of the initially added radioactivity, respectively. After 6 months, bound14C was more as compared to extractable 14C and p,p'‐DDD was the major metabolite of p,p'‐DDT in the extractable fraction. DDT dissipated from clay plates under indoor conditions with an overall half‐life of 160 days.  相似文献   

16.
Abstract

Effects of the herbicide metsulfuron‐methyl on soil microorganisms and their activities in two soils were evaluated under laboratory conditions. Measurements included their populations, soil respiration, and microbial biomass. In the clay soil, bacterial populations decreased with increasing concentration of metsulfuron‐methyl during the first 9 days of incubation but exceeded that of the control soil from day 27 onward. In the sandy loam soil, the herbicide reduced bacterial populations during the first 3 days after application, but these increased to the level of untreated controls after 9 days’ incubation. Fungal populations in both soils increased with increasing metsulfuron‐methyl concentrations, especially in the sandy loam soil. CO2 evolution was stimulated in both soils in the presence of the herbicide initially, but decreased during days 3 to 9 of the incubation period before increasing again afterward. The presence of metsulfuron‐methyl in the soil increased microbial biomass, except in sandy loam soil at the first day of incubation.  相似文献   

17.
Abstract

Leaching, downward mobility and persistence of tebufenozide was investigated under laboratory conditions in columns packed with forest litter and soil, after fortification with the analytical grade material (purity > 99.6%) and with two commercial formulations, RH‐5992 2F (aqueous flowable) and RH‐5992 ES (emulsion suspension). Two types of litter and soil were used: one type with relatively high amounts of sand and the other with high amounts of clay.

The concentrations eluted in the leachates were lower when the analytical material (dissolved in acetone) was used for fortification, than when the two formulations (diluted with water) were used. The amount leached was higher for RH‐5992 2F than for RH‐5992 ES. The type of substrate, i.e., sandy or clay type, had only marginal influence on the amounts eluted in the leachates. Downward movement of tebufenozide from the top 2‐cm layer to the untreated middle and bottom layers (3‐cm segments) was consistently lower when the analytical material was used for fortification, than when the two formulations were used. Downward movement was higher for RH‐5992 2F than for RH‐5992 ES. Persistence of tebufenozide in substrates, maintained under submerged conditions for 70 days after leaching, indicated an initial 2‐week lag period prior to the onset of degradation. Formulation‐related differences were observed in the half‐life (DT50) values. When the analytical material was used for fortification, the DT50 ranged from ca 54 to 59 d. However, when the formulations were used for fortification, the DT50 showed a higher range, i.e., from ca 62 to 67 d for RH‐5992 2F and ca 70 to 80 d for RH‐5992 ES. Formulation ingredients appear to have caused enhanced adsorption of tebufenozide onto the substrates, thus delaying degradation.  相似文献   

18.
Abstract

Degradation of the nematicide Telone II (cis‐ and trans‐1,3‐dichloropropene comprise the active ingredients) in soil was studied using 14C‐l,3‐dichloropropene (DCP) along with soil samples collected from a field test site near Quincy, Florida. A mixed bacterial culture isolated from the soil in the presence of a second carbon source, glucose or yeast extract, completely degraded 14C‐DCP to 14CO2, water‐soluble products, and microbial mass. 14C‐DCP in soil was also degraded to 14CO2. After 28 days of incubation, the labeled chemical was completely degraded to 14CO2, water‐soluble metabolites, bound‐residues, and possibly some microbial mass. Little or no difference was observed in the degradation of 14C‐DCP in soil samples collected one week prior to field application of Telone II, or two weeks and two years after application.  相似文献   

19.
Abstract

Biodegradation of endosulfan isomers in soil‐applied and flask‐coated conditions was studied, by an isolated bacterial coculture. The degradation in soil‐applied form was 20–30% slower than in flask‐coated condition. Addition of a biosurfactant, isolated from Bacillus subtilis MTCC 1427, enhanced the rate of biodegradation by 30–45% in both the conditions. It also mobilized the residual endosulfan towards biodegradation, that otherwise remains undegraded.  相似文献   

20.
Abstract

Pretreatment of a Drummer‐Catlin soil mixture with granular formulations of carbofuran or trimethacarb enhanced biodegradation of subsequent treatments with the technical formulations. Degradation of carbofuran was enhanced by pretreatments with trimethacarb, and degradation of trimethacarb was enhanced by pretreatments with carbofuran. Bendiocarb degradation was enhanced by pretreatments of soil with carbofuran or trimethacarb. In bioassays with southern corn rootworm larvae, biological activity of carbofuran, trimethacarb, and bendiocarb was rapidly lost in soils pretreated with granular formulations. Pretreatment of soil with granular terbufos did not enhance the biodegradation of subsequent applications of technical terbufos. Several microbial biomass assays showed an increase in specific carbofuran‐degrading bacteria in soils that were pretreated with carbofuran. Bacteria were isolated that could grow on carbofuran and apparently degrade it when present with another carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号