首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper discusses the degradation kinetics of mixed (lindane, methyl parathion and carbofuran) pesticides by mixed pesticide enriched cultures (MEC) under various environmental conditions. The bacterial strains isolated from the mixed microbial consortium were identified as Pseudomonas aeruginosa (MTCC 9236), Bacillus sp. (MTCC 9235) and Chryseobacterium joostei (MTCC 9237). Batch studies were conducted to estimate the biokinetic parameters like the maximum specific growth rate (μmax), Yield Coefficient (YT), half saturation concentration (Ks) and inhibition concentration (Ki) for individual and mixed pesticide enriched cultures. The cultures enriched in a particular pollutant always showed high growth rate and low inhibition in that particular pollutant compared to MEC. After seven weeks of incubation, mixed pesticide enriched cultures were able to degrade 72% lindane, 95% carbofuran and 100% of methyl parathion in facultative co-metabolic conditions. In aerobic systems, degradation efficiencies of lindane methyl parathion and carbofuran were increased by the addition of 2g L? 1 of dextrose. Though many metabolic compounds of mixed pesticides were observed at different time intervals, none of the metabolites were persistent. Based on the observed metabolites, a degradation pathway was postulated for different pesticides under various environmental conditions.  相似文献   

2.
The goal of this study was to optimize methyl parathion (O,O-dimethyl-O-4-p-nitrophenyl phosphorothioate) degradation using a strain of Escherichia coli DH5α expressing the opd gene. Our results indicate that this strain had lower enzymatic activity compared to the Flavobacterium sp. ATCC 27551 strain from which the opd gene was derived. Both strains were assessed for their ability to degrade methyl parathion (MP) in a mineral salt medium with or without the addition of glucose either as suspended cells or immobilized on tezontle, a volcanic rock. MP was degraded by both strains with similar efficiencies, but immobilized cells degraded MP more efficiently than cells in suspension. However, the viability of E. coli cells was much higher than that of the Flavobacterium sp. We confirmed the decrease in toxicity from the treated effluents through acetylcholinesterase activity tests, indicating the potential of this method for the treatment of solutions containing MP.  相似文献   

3.
Studies were conducted to analyze the residue of commonly used pesticides viz. methyl parathion, chloropyrifos, endosulfan, cypermethrin, fenvalerate, carbendazim, imidacloprid and carbaryl in mango, Dashehari variety, integrated pest management (IPM) and non-IPM samples were collected from the IPM and non-IPM orchards, Lucknow, India. We also present a method for the simultaneous determination of these pesticides in mango samples. Residues of methyl parathion, chloropyriphos, endosulfan, cypermethrin, fenvalerate were extracted from the samples with acetone: cyclohexane: ethyl acetate in the ratio 2:1:1 followed by cleanup using neutral alumina. Analysis was performed by gas chromatography-electron capture detector (GC-ECD) with a megabore column (OV-1). Residues of carbendazim, imidacloprid and carbaryl were extracted with acetone and after cleanup, analysis was performed by high performance liquid chromatography (HPLC) using photo diode array (PDA) detector. Recoveries of all the pesticides ranged between 72.7 – 110.6%, at 0.1 and 1.0 μg g? 1 level of fortification. The residues detected in non-IPM samples of mango were found to be below the prescribed limits of maximum residue limit (MRL) while IPM samples were free from pesticide residues.  相似文献   

4.
利用基因工程菌BL21处理有机磷混合农药废水的研究   总被引:1,自引:0,他引:1  
研究了悬浮状态和固定化状态的基因工程菌BL21对有机磷混合农药废水的降解特性.工程菌能快速、高效地降解有机磷混合农药,其最适底物是对硫磷,而马拉硫磷不能被工程菌降解.不同农药降解速率的差别造成了不同有机磷农药的降解过程需要用不同的动力学模型来描述.比较固定化状态和悬浮状态的工程菌的降解效果可知,固定化工程菌的降解活性较后者明显降低,其比降解速率大约仅为后者的20%.考察固定化工程菌长期运行的效果,发现其降解活性保存良好,工程菌稳定性大大提高,未出现固定化细胞溶涨、破碎现象.固定化后,工程菌的比降解速率虽然比悬浮工程菌降低了,但固定化工程菌更适用于长期运行的废水处理系统.  相似文献   

5.
Diethyl (carboxymethyl) phosphonate (DECP) was used as the hapten to develop an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for detecting organophosphorus pesticides (OPs). Conjugator of DECP with bovin serum albumin (BSA) was used as the immunogen for producing the polyclonal antibodies (PcAbs). Three antisera were obtained after the immune procedure. Characterization studies of the PcAbs indicated that the titer of antiserum-1 was highest in 3 antisera, and antiserum-1 had high affinity and specificity to the parathion, dichlorvos and pirimiphos. The IC-ELISA showed an IC50 of 0.428 μ g/mL with a detection limit of 0.0125 μ g/mL to parathion. The assay also indicated that the IC50 values of pirimiphos and dichlorvos were 0.331 μ g/mL and 1.25 μ g/mL respectively, and the detection limits of pirimiphos and dichlorvos were 0.0116 μ g/mL and 0.048 μ g/mL respectively. Recoveries of parathion, pirimiphos and dichlorvos spiked into water samples ranged from 90% to 160%. The results indicated that the ELISA could be a convenient and supplemental analytical tool for monitoring OPs residues in environmental water samples.  相似文献   

6.
Studies were conducted to analyze the residue of commonly used pesticides viz. methyl parathion, chloropyrifos, endosulfan, cypermethrin, fenvalerate, carbendazim, imidacloprid and carbaryl in mango, Dashehari variety, integrated pest management (IPM) and non-IPM samples were collected from the IPM and non-IPM orchards, Lucknow, India. We also present a method for the simultaneous determination of these pesticides in mango samples. Residues of methyl parathion, chloropyriphos, endosulfan, cypermethrin, fenvalerate were extracted from the samples with acetone: cyclohexane: ethyl acetate in the ratio 2:1:1 followed by cleanup using neutral alumina. Analysis was performed by gas chromatography-electron capture detector (GC-ECD) with a megabore column (OV-1). Residues of carbendazim, imidacloprid and carbaryl were extracted with acetone and after cleanup, analysis was performed by high performance liquid chromatography (HPLC) using photo diode array (PDA) detector. Recoveries of all the pesticides ranged between 72.7-110.6%, at 0.1 and 1.0 microg g(-1) level of fortification. The residues detected in non-IPM samples of mango were found to be below the prescribed limits of maximum residue limit (MRL) while IPM samples were free from pesticide residues.  相似文献   

7.
Abstract

This paper reports on the residues of methyl parathion (O,O‐dimethyl O‐4‐nitrophenyl phosphorothioate), trifluralin (α, α, α‐trifluoro‐2, 6‐dinitro‐N, N‐dipropyl‐p‐toluidine), endosulfan [(1, 4, 5, 6, 7, 7‐hexachloro‐8, 9, 10‐trinorborn‐5‐en‐2, 3‐ylenebismethylene) sulfite] and dimethoate (O, O‐dimethyl S‐methylcarbamoylmethyl phosphorodithioate) in a cotton crop soil. Soil samples (0–15 cm) were collected at different periods from the cotton crop farm and subjected to Soxhlet extraction. The extracted material was analysed after clean‐up by a HP5890 II gas Chromatograph equipped with a 63Ni electron‐capture detector (ECD‐63Ni) and fitted with a 25m x 0,2mm i.d. fused silica capillary column [Ultra‐2 (5% phenylmethyl polysiloxane)]. The recoveries of the pesticide residues from the spiked control soil were determined after Soxhlet extraction and C18 cartridges clean‐up by using radiotracer techniques with the corresponding 14C‐pesticides. The results show that in the cotton crop soil the pesticide residues under study were present in the range of 0.1 to 0.4 mg ? kg‐1. Endosulfan was found to be rapidly degraded in the soil and formed a sulfate metabolite.  相似文献   

8.
Photocatalytic degradation of the herbicide, pendimethalin (PM) was investigated with BaTiO3/TiO2 UV light system in the presence of peroxide and persulphate species in aqueous medium. The nanoparticles of BaTiO3 and TiO2 were obtained by gel to crystallite conversion method. These photo catalysts are characterized by energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) adsorption isotherm and reflectance spectral studies. The quantum yields for TiO2 and BaTiO3 for the degradation reactions are 3.166 Einstein m?2 s?1 and 2.729 Einstein m?2 s?1 and catalytic efficiencies are 6.0444 × 10?7 mg?2h?1L2 and 5.403 × 10?7 mg?2h?1L2, respectively as calculated from experimental results. BaTiO3 exhibited comparable photocatalytic efficiency in the degradation of pendimethalin as the most widely used TiO2 photocatalyst. The persulphate played an important role in enhancing the rate of degradation of pendimethalin when compared to hydrogen peroxide. The degradation process of pendimethalin followed the first-order kinetics and it is in agreement with Langmuir-Hinshelwood model of surface mechanism. The reason for high stability of pendimethalin for UV-degradation even in the presence of catalyst and oxidizing agents were explored. The higher rate of degradation was observed in alkaline medium at pH 11. The degradation process was monitored by spectroscopic techniques such as ultra violet-visible (UV-Vis), infrared (IR) and gas chromatography mass spectroscopy (GC-MS). The major intermediate products identified were: N-propyl-2-nitro-6-amino-3, 4-xylidine, (2, 3-dimethyl-5-nitro-6-hydroxy amine) phenol and N-Propyl-3, 4-dimethyl-2, 6-dinitroaniline by GC-MS analysis and the probable reaction mechanism has been proposed based on these products.  相似文献   

9.
TiO2/Ni PECO体系降解DMP的动力学和光电协同作用研究   总被引:2,自引:1,他引:1  
以采用微波辅助法制备的TiO2/Ni光电极为阳极,纤维状石墨毡材料(graphite felt,GF)为阴极,饱和甘汞电极(saturated calomel electrode, SCE)为参比电极建立TiO2/Ni 光电催化氧化(PECO)体系。以邻苯二甲酸二甲酯(dimethy phthalate,DMP)为目标物,研究其光电催化降解反应动力学和光电协同作用。结果显示:DMP的降解符合拟一级动力学规律;当DMP初始浓度一定时,影响DMP光电催化降解速率的因素由强到弱依次为:催化剂有效面积,紫外光强度,曝氧速率,外加偏转电压等。实验证明本体系中光电之间具有协同作用。  相似文献   

10.

Introduction  

In the present work, we explored the kinetics of dichlorvos (2,2-dichlorvinyl dimethyl phosphate, DDVP) decay through UV-A light-induced TiO2 photocatalysis at pH 4 and 9, and the formation of degradation intermediates and final products under specific experimental conditions. Experimental observations and theoretical considerations allowed us to suggest the degradation mechanism of DDVP by the UV/TiO2 process in aqueous solution.  相似文献   

11.
以膨胀珍珠岩为载体,采用溶胶凝胶法对其进行负载,制备出不同类型的光催化材料(TiO2-EP、Ag+-TiO2-EP),并在模拟日光条件下,研究其对甲基橙溶液的降解效果。结果表明,浸渍3次且担载0.04% Ag+的负载型TiO2光催化活性最高,在光催化剂用量为0.3 g,20 mL初始浓度为10 mg/L甲基橙溶液光照4 h后降解率可达81.6%,且甲基橙的光催化降解服从一级动力学方程。回收3次后仍有较强的活性,其2 h降解率为24.8%。  相似文献   

12.
In this study, a fixed bed flow through UVA-LED photoreactor was used to compare the efficiency of ozone, photocatalysis and photocatalysis-ozone degradation, and mineralization of two pure pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA), and a commercial one, Killex®. For the degradation of the parent compounds, ozone-based processes were more effective. While for mineralization, photocatalytic processes were more effective. Photocatalytic ozonation was the most efficient process for both the degradation and mineralization of the parent compounds. The degradation rates and mineralization by photocatalytic ozonation were higher than the summation of the corresponding rates by ozonation and photocatalysis, indicating a symbiotic relationship.Overall, the photocatalytic ozonation process with the fixed bed TiO2 reduces the time needed for the degradation and mineralization of the pesticides, reduces the costs of powder catalyst separation and overcomes the reduced efficiency of immobilized catalysts, which makes the process quite attractive for practical applications.  相似文献   

13.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

14.
Liu C  Yang B  Gan J  Zhang Y  Liang M  Shu X  Shu J 《Chemosphere》2012,87(5):470-476
Organophosphorus pesticides (OPPs) emit into the atmosphere in both gas and particulate phases via spray drift from treatments and post-application emission, but most of their degradations in the atmosphere are not well known. In this study, the heterogeneous reactions of nitrate (NO3) radicals with three typical OPPs (parathion, malathion, and fenthion) absorbed on azelaic acid particles are investigated using an online vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The reaction products observed with the VUV-ATOFMS are identified on the basis of GC/MS analysis of the products in the reaction between NO3 radicals and the coating of the pesticide. Paraoxon is identified as the only product of parathion; malaoxon and bis(1,2-bis-ethoxycarbonylethyl)disulfide as the products of malathion; fenoxon, fenoxon sulfoxide, fenthion sulfoxide, fenoxon sulfone, and fenthion sulfone as the products of fenthion. The degradation rates of parathion, malathion, and fenthion under the experimental conditions are 5.5 × 10−3, 5.6 × 10−2, and 3.3 × 10−2 s−1, respectively. The pathways of the heterogeneous reactions between the three OPPs and NO3 radicals are proposed. The experimental results reveal the possible transformations of these OPPs through the oxidation of NO3 radicals in the atmosphere.  相似文献   

15.
This work presents a study of the abiotic degradation of commercially available methyl parathion in aqueous solution at two different concentrations (88 mg/L and 200 μg/L). The effects of solar irradiation and the presence of humic acids were evaluated and revealed a synergistic response between them. The half-life of methyl parathion ranged from 4.9 to 37 days, and the experimental data also show that photochemical processes were the most relevant in this case. The only byproduct found in samples submitted to shadowed conditions was 4-nitrophenol. On the other hand, 4-nitrophenol, methyl paraoxon and a new degradation product (O,O-dimethyl O-p-hydroxyphenyl phosphorothioate) were detected when the samples were exposed directly to sunlight. This newly identified compound was prepared in the laboratory by thiophosphorylation of hydroquinone, and coelution experiments with authentic samples provided unambiguous confirmation of the presence of O,O-dimethyl O-p-hydroxy phenylphosphorothioate in samples.  相似文献   

16.
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p′-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p′-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol–gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p′-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p′-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p′-DDT effectively under both UV and visible lights. The rate constant of the p,p′-DDT degradation under UV light was only 0.0121 min?1, whereas the rate constant of the p,p′-DDT degradation under visible light was 0.1282 min?1. Under visible light, the 100% degradation of p,p′-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p′-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg?1, and the apparent reaction rate constant (k) was 1.3941 mg L?1-min. Major intermediates detected during the p,p′-DDT degradation were p,p′-DDE, o,p′-DDE, p,p′-DDD and p,p′-DDD. Results from this work can be applied further for the breakdown of p,p′-DDT molecule in the real contaminated water using this technology.  相似文献   

17.
Microwave-assisted solvent extraction (MASE) was investigated as an alternative for extraction of parathion (O,O-diethyl O-4-nitrophenyl phosphorothioate), methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate), p,p'-DDE [1,1'-dichloro-2,2-bis(4-chlorophenyl)ethane], hexachlorobenzene (HCB), simazine (6-chloro-N2,N4-diethyl- 1 ,3,5-triazine-2,4-diamine) and paraquat dichoride (1,1'-dimethyl-4,4'-bipyridinium) from two different soils and from an earthworm-growing substrate. The matrices were fortified with 14C-radiolabeled pesticides and extracted with various solvent systems under different microwave conditions. Recoveries of more than 80% could be obtained depending on the used microwave conditions and solvent, except for paraquat whose recovery was generally less efficient. Thus, MASE can be successfully used to extract pesticides from environmental and biological samples and could be a viable alternative to conventional extraction methods. The technique uses smaller amounts of organic solvents, thereby minimizing the costs of the analysis and the disposal of waste solvent.  相似文献   

18.

The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir–Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm? 1 and 0.984 ppm min? 1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

19.
Triclopyr is a widely used pesticide which is non-biodegradable and enters aquatic systems. The ozone facilitated photocatalyzed degradation and mineralization of Triclopyr using Au-loaded titania as heterogeneous catalyst is reported. The oxidative degradation activity of the hazardous pesticide was investigated at pH 7.8 under varied reaction conditions, including in presence and absence of ozone, titania alone, in presence and absence of light and with different loadings of Au on support. Photocatalysis with 2% Au/TiO2 in the presence of ozone yielded 100% degradation of Triclopyr in 2 h. The extent of degradation of pesticide and its mineralization were confirmed by GC-MS. For 10 mg/L of Triclopyr, 0.1 g/L of catalyst was found to be the optimum for mineralization. Results show that photocatalyzed ozonation with Au/TiO2 as catalyst is a very effective for its removal. No leaching of Au was observed in triplicate runs. Catalyst was fully recoverable and reusable with no loss of activity.  相似文献   

20.
Li X  Zou X  Qu Z  Zhao Q  Wang L 《Chemosphere》2011,83(5):674-679
In this work, Ag-doping TiO2 nanotubes were prepared and employed as the photocatalyst for the degradation of toluene. The TiO2 nanotube powder was produced by the rapid-breakdown potentiostatic anodization of Ti foil in chloride-containing electrolytes, and then doped with Ag through an incipient wetness impregnation method. The samples were characterized by scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, surface photovoltage measurements, X-ray photoelectron spectroscopy and N2 adsorption. The nanotubular TiO2 photocatalysts showed an outer diameter of approximately 40 nm, fine mesoporous structure and high specific surface area. The photocatalytic activity of Ag-doping TiO2 nanotube powder was evaluated through photooxidation of gaseous toluene. The results indicated that the degradation efficiency of toluene could get 98% after 4 h reaction using the Ag-doping TiO2 nanotubes as the photocatalyst under UV light illumination, which was higher than that of the pure TiO2 nanotubes, Ag-doping P25 or P25. Benzaldehyde species could be observed during the photocatalytic oxidation monitored by in situ FTIR, and the formed benzaldehyde intermediate during reaction would be partially oxidized into CO2 and H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号