首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The redox-active quinalphos main metabolite, 2-hydroxyquinoxaline, is particularly effective under excitation by light. We have studied the photocatalytic destruction of melatonin and its precursors, because the cytoprotective indoleamine has been detected in high quantities in mammalian skin. In photooxidation reactions, in which melatonin, N-acetylserotonin and serotonin are destroyed by 2-hydroxyquinoxaline, the photocatalyst is virtually not consumed. Rates of melatonin and serotonin destruction are not changed by the singlet oxygen quencher 1,4-diazabicyclo-(2,2,2)-octane, indicating that this oxygen species is not involved in the primary reactions, so that the persistence of 2-hydroxyquinoxaline has to be explained by redox cycling. This should imply formation of an organic radical, presumably the quinoxaline-2-oxyl radical, from which 2-hydroxyquinoxaline is regenerated by electron abstraction from indolic radical scavengers. Electron donation by 2-hydroxyquinoxaline is demonstrated by reduction of the 2,2'-azino-bis-(3-ethylbenzthiazolinyl-6-sulfonic acid) cation radical under ultrasound excitation. The compound 2-hydroxyquinoxaline interacts with the specific superoxide anion scavenger Tiron. Formation of oligomeric products from melatonin and serotonin is strongly inhibited by sodium dithionite. Products from photocatalytic indolamine conversion are predominantly dimers and oligomers. No kynuramines were detected in the case of serotonin oxidation, and melatonin's otherwise prevailing oxidation product N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, another cytoprotective metabolite, is only formed in relatively small quantities. The proportion between products from melatonin is changed by 1,4-diazabicyclo-(2,2,2)-octane: singlet oxygen, also formed under the influence of excited 2-hydroxyquinoxaline, only affects secondary reactions.  相似文献   

2.
在日处理200t进口流化床垃圾焚烧炉上,进行烟气喷水降温加上喷消石灰粉末脱除尾气中的酸性气体HCl和SO2的试验研究,HCl和SO2浓度由布袋除尘器出口的在线气体分析仪测得,结果表明HCl和SO2的去除率在Ca/Cl摩尔比等于9时分别为80%和20%,说明该法消石灰利用率较低,宜改为半干法脱除HCl和SO2酸性气体,以便降低吸收剂用量,提高运行的经济性.  相似文献   

3.
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5 μM and H2O2 at 300 μM slightly increased cell lethality from a control value of 5.4 ± 0.5% (mean ± standard deviation of four experiments) to 7.8 ± 1.3% and 9.0 ± 0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2 ± 1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3–5 μM) but not on H2O2 concentration (30–300 μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn2+ concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn2+, significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn2+-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号