共查询到15条相似文献,搜索用时 15 毫秒
1.
ASIF QURESHI KWANG VICTOR LO DONALD S. MAVINIC PING HUANG LIAO FREDERICH KOCH HARLAN KELLY 《Journal of environmental science and health. Part. B》2013,48(7):1221-1235
A combined approach of biological treatment, solids digestion and nutrient recovery was tested on dairy manure. A sequencing batch reactor (SBR) was operated in three modes, in order to optimize nutrient (nitrogen and phosphorus) removals. The highest average removal efficiencies of 91% for NH4-N, 59% for PO4-P and 80% for total chemical oxygen demand (COD) were achieved. Staining experiments suggested the coexistence of glycogen and phosphorus accumulating organisms. Anaerobic digestion of wasted bio-solids was able to produce a PO4-P concentration of 70 mgL?1 in the supernatant. A pilot-scale experiment, designed to recover phosphorus in the supernatant as struvite (magnesium ammonium phosphate), was able to remove 82% of soluble PO4-P. 相似文献
2.
Asif Qureshi Kwang Victor Lo Ping Huang Liao 《Journal of environmental science and health. Part. B》2013,48(4):350-357
Microwave digestion of liquid dairy manure was tested for the release of nutrients, such as orthophosphates, ammonia-nitrogen, magnesium, calcium and potassium, both with and without the aid of an oxidizing agent (hydrogen peroxide). The orthophosphate to total phosphorus ratio of the manure increased from 21% to greater than 80% with 5 minutes of microwave treatment. More than 36% of total chemical oxygen demand (t-COD) of the manure was reduced when microwave digestion was assisted with peroxide addition. In addition, the volatile fatty acids (VFAs) distribution shifted to simpler chain acids (acetic acid in particular) with an increase in operating temperature. In the second part of the study, digested manure with increased soluble phosphate was tested for the recovery of struvite (magnesium ammonium phosphate) at different pH. It was found that up to 90% of orthophosphate can be removed from the solution. Overall, it was concluded that the oxidizing agent-assisted microwave digestion process can be used upstream of anaerobic digestion, following which the anaerobically digested manure can be used for struvite recovery. Thus, this microwave digestion process presents the potential for enhanced efficiencies in both manure digestion and struvite recovery. 相似文献
3.
Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide 总被引:5,自引:0,他引:5
In this study the treatment of coking wastewater was investigated by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Particular attention was paid to the effect of initial pH, dosage of H2O2 and to improvement in biodegradation. The results showed that higher COD and total phenol removal rates were achieved with a decrease in initial pH and an increase in H2O2 dosage. At an initial pH of less than 6.5 and H2O2 concentration of 0.3 M, COD removal reached 44-50% and approximately 95% of total phenol removal was achieved at a reaction time of 1 h. The oxygen uptake rate of the effluent measured at a reaction time of 1 h increased by approximately 65% compared to that of the raw coking wastewater. This indicated that biodegradation of the coking wastewater was significantly improved. Several organic compounds, including bifuran, quinoline, resorcinol and benzofuranol were removed completely as determined by GC-MS analysis. The advanced Fenton oxidation process is an effective pretreatment method for the removal of organic pollutants from coking wastewater. This process increases biodegradation, and may be combined with a classical biological process to achieve effluent of high quality. 相似文献
4.
I. Tunile A. Srinivasan P. H. Liao 《Journal of environmental science and health. Part. B》2013,48(12):824-830
AbstractThe microwave enhanced advanced oxidation process (MW-AOP) was used to treat dairy manure in a continuous-flow 915?MHz microwave wastewater treatment system. The treatment efficiency increased with an increase in temperature, as well as hydrogen peroxide dosage. The settling property was also improved in all treated sets, regardless of temperature applied. The system operated at temperatures >100?°C had a much higher soluble chemical oxygen demand than at temperatures <100?°C. The highest soluble carbonaceous compounds, orthophosphate and ammonia were obtained at 110?°C and 0.6%H2O2 per % of total solids content. The process should be operated at higher temperatures and higher hydrogen peroxide dosages for maximizing solids disintegration, nutrient release and energy efficiency. An energy fingerprint correlating the cumulative energy consumption and temperature rise was developed. The results demonstrated that the custom designed MW-AOP system is suitable for the effective treatment of dairy manure. The system can readily be scaled up and integrated into a dairy farm manure treatment and resource recovery system. 相似文献
5.
Anju A. Kenge Ping H. Liao Kwang V. Lo 《Journal of environmental science and health. Part. B》2013,48(6):606-612
The microwave enhanced advanced oxidation process (MW/H2O2-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H2O2-AOP was conducted at a microwave temperature of 120°C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53–0.75 g H2O2/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS. 相似文献
6.
7.
Yang Yu Ing W. Lo Ping H. Liao Kwang V. Lo 《Journal of environmental science and health. Part. B》2013,48(8):804-809
The microwave enhanced advanced oxidation process (MW/H2O2-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H2O2-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H2O2-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H2O2-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields. 相似文献
8.
Winnie I. Chan K. Victor Lo Ping H. Liao 《Journal of environmental science and health. Part. B》2013,48(2):185-191
The microwave-enhanced advanced oxidation process was used to treat fish silage for nutrient release and solids reduction prior to its use as a fertilizer for greenhouse operations. Fifteen sets of experiments with varying hydrogen peroxide dosages and treatment temperatures were conducted to evaluate the effectiveness of the process on the solubilization of fertilizer constituents. It was found that up to 26% of total Kjeldahl nitrogen could be released as ammonia with 6% hydrogen peroxide dosage at 170°C. An increase of nitrate/nitrite concentration was observed with higher hydrogen peroxide dosage and higher microwave temperature; the highest concentration of 10.2 mg L? 1 nitrates/nitrites was achieved at at 170°C and 6% H2O2 dosage. Up to 20 ± 9.5% of total chemical oxygen demand was reduced at temperatures between 120 and 170°C. Large quantities of volatile fatty acids were generated at lower temperatures, corresponding to an increase in soluble chemical oxygen demand, but not at higher temperatures. The treatment of fish silage using the microwave-enhanced advanced oxidation process appears to be promising. 相似文献
9.
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively. 相似文献
10.
11.
W. K. KIM R. C. ANDERSON A. L. RATLIFF D. J. NISBET S. C. RICKE 《Journal of environmental science and health. Part. B》2013,48(1):97-107
The overall objective of this study was to evaluate the potential ability of nitrocompounds to reduce ammonia volatilization by inhibiting uric acid–utilizing microorganisms. Experiment I was conducted to evaluate the effects of nitrocompounds on the growth of uric acid–utilizing microorganisms isolated from poultry manure during six-hour incubation. There were five treatments: (1) control, (2) 50 mM nitroethane, (3) 50 mM nitroethanol, (4) 50 mM nitropropanol, and (5) 50 mM nitropropionic acid. Optical density values of nitrocompounds were significantly lower than that of control at two, four, and six hours. Plate counts of uric acid–utilizing microorganisms after six-hour incubation exhibited that nitrocompounds greatly reduced the growth of these microorganisms except for the nitroethane (P < 0.05). The nitropropanol and nitropropionic acid treatments showed significantly higher inhibitory effects compared to the nitroethanol. Experiments II and III were conducted to evaluate inhibitory effects of nitrocompounds on growth of uric acid–utilizing microorganisms compared to non-nitrocompounds such as ethanol, propanol, and propionic acid. Experiments II and III consisted of seven treatments: (1) control, (2) nitroethanol, (3) nitropropanol, (4) nitropropionic acid, (5) ethanol, (6) propanol, and (7) propionic acid. The incubation times of Experiments II and III were 6 and 24 h, respectively. The nitrocompounds were significantly more successful in inhibiting growth of uric acid–utilizing microorganisms compared to those non-nitrocompounds. These results suggest that nitrocompounds exhibit potential to reduce ammonia volatilization in poultry manure by inhibiting growth of uric acid–utilizing microorganisms. 相似文献
12.
The activity of copper oxide, titanium carbide and silicon nitride nanoparticles for the oxidative degradation of environmentally relevant concentrations (μg L−1 range) of enrofloxacin - an important veterinary antibiotic drug - in aqueous solutions was investigated. With hydrogen peroxide as an oxidative agent, both copper oxide and titanium carbide decrease the concentration of enrofloxacin by more than 90% over 12 h. Addition of sodium halide salts strongly increases the reaction rate of copper oxide nanoparticles. The mechanism for the formation of Reactive Oxygen Species (ROS) was investigated by Electron Spin Resonance (ESR). 相似文献
13.
The non-ionic surfactant Brij 35 was effectively removed from concentrated aqueous solution by the peroxymonosulfate/Co(II) system, using oxone (2KHSO5·KHSO4·K2SO4) as a source of peroxymonosulfate. At pH = 2.3 and initial Brij 35 concentration in the range 680-2410 mg L−1, 86-94% removal was achieved after 24 h, using Co(II) = 15 μM and oxone = 5.9 mM. The effectiveness of removal did not change when initial pH was in the range 2.3-8.2. After five subsequent additions of Co(II) and oxone to the solution, COD and TOC removals increased up to 64% and 33%, respectively. Radical quenching tests confirmed that sulfate radical was the dominant radical species in the system. The main identified by-products from surfactant degradation were: (a) low molecular weight organic acids; (b) aldehydes and formates with shorter ethoxy chain than Brij 35; (c) alcohol ethoxylates carrying hydroxyl groups bonded to ethoxy chain. By-products identification allowed to hypothesize the pathways of Brij 35 degradation. 相似文献
14.
Asha Srinivasan Ping H. Liao 《Journal of environmental science and health. Part. B》2016,51(12):840-846
A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H2O2-AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H2O2 dosage (0.4% H2O2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5–22 kJ mole?1. The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H2O2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H2O2-AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system. 相似文献
15.
Siedlecka EM Stepnowski P 《Environmental science and pollution research international》2009,16(4):453-458
Background, aim, and scope Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are
a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial
applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological
wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful
organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them,
the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through
different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates
in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride.
Materials and methods The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide.
All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during
the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with
the aid of 1H NMR.
Results Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance
to degradation was weaker, the shorter the alkyl chain.
Discussion The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium
ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing
the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from
four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium
to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific,
with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack.
Conclusions The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by
a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium
chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra
showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring
and the n-alkyl chain being susceptible to attack.
Recommendations and perspectives Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management
studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium
ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the
future structural design as well as tailor the technological process of these chemicals 相似文献