首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The vertical distribution of diazinon in air was measured for 35 days after a label‐prescribed crack and crevice application. Residue levels were higher at floor level than at chest and ceiling heights on day 0, but levels tended to equalize by 7 days. Concentrations were greater at chest and ceiling levels on days 14 and 21, but were equivalent on days 28 and 35. Residues in the adjacent, upper and lower rooms generally were equivalent at all sampling positions and maximum residues occurred in these rooms, and in three other rooms on the same floor level as the treated room, 3 days after application. Low but measurable residues were found in air samples 35 days after application, which indicates that low concentrations of relatively nonpersistent diazinon will remain within structures protected from direct sunlight and ventilation for several weeks.  相似文献   

2.
Abstract

Farm ditches flowing into three important rivers in the Lower Fraser Valley of British Columbia, Canada, were sampled periodically at seven locations from July to December in 1991, to determine the occurrence and levels of seven organophosphorus (OP) insecticides. Based oh sales records for the year, the uses of OP insecticides in this area were as follows: malathion > diazinon > parathion > dimethoate > azinphos‐methyl > fensulfothion, but no sales of chlorfenvinphos. Residues of parathion, diazinon, fensulfothion, dimethoate and chlorfenvinphos were detected at levels ranging from 1 ‐ 7,785 >μg/kg in cropped soils collected from areas adjacent to the sites for sampling ditch water and sediments. Malathion and azinphos‐methyl were not detected in any of the substrates studied, demonstrating their rapid degradation in the environment. Diazinon and dimethoate were consistently found in ditch water at seven locations, with an average concentration of 0.07 μg/L and 0.27 μg/L, respectively. Fensulfothion and parathion, with an average concentration of 0.08 μg/L and 0.17 μg/L, respectively, were sporadically found in ditch water at two locations. In ditch sediments, diazinon was detected at three locations and fensulfothion at two. The average concentrations of these two insecticides were 16 μg/kg and 9 jug/kg, respectively. The potential impact on aquatic organisms of these OP insecticides in ditches is discussed.  相似文献   

3.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   

4.
Abstract

Acute and chronic toxicity tests with diazinon (diethyl 2‐isopropyl‐6‐methyl‐4‐pyrimidinyl phosphorothionate) were conducted on Daphnia magna. The 24‐hr static LC50 was 0.86 μL.L‐1. The sublethal effects of 0.05, 0.1, 0.5, 0.75 and 1.0 ngL‐1 of diazinon concentrations on the survival, reproduction and growth of D. magna were monitored for 21 days. The algae Nannochloris oculata (5 x 105 cellsmL‐1) was used to feed the daphnids. The parameters used to determined the effect of the pesticide on D. magna were: mean total young per female; mean brood size; days to first brood; intrinsic rate of natural increase (r); growth; and survival. Reproduction as well as survival was significantly reduced at diazinon concentrations of 0.10 ngL‐1 and higher. The intrinsic rate of natural increase (r) decreased with increasing concentrations of diazinon. Growth, as measured by body length, was depressed significantly at 0.05 ngL‐1 of diazinon and higher concentrations. The maximum acceptable toxicant concentration (MATC) was calculated. The chronic data was used to formulate an acute/chronic ratio.  相似文献   

5.
Abstract

Residues of 2,4‐D (2,4‐dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966–68 and 1970–75 periods were determined by gas‐liquid Chromatographic techniques. Initially, individual esters of 2,4‐D were characterized by retention times and confirmed further by co‐injection and dual column procedures. Since 1973, however, only total 2,4‐D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible.

Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4‐D, with butyl esters being found most frequently. The daily 24‐hr mean atmospheric concentrations of 2,4‐D ranged from 0.01 to 1.22 μg/m3, 0.01 to 13.50 μg/m3, and 0.05 to 0.59 μg/m for the iso‐propyl, mixed butyl and iso‐octyl esters, respectively. Even when the samples were analysed for the total 2,4‐D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 μg/m. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 μg/m3 of 2,4‐D. In another 40% of the samples, the levels of 2,4‐D ranged from 0.01 to 0.099 yg/m. Only about 30% of the samples contained 2,4‐D concentrations higher than 0.1 μg/m3, with only 10% or less exceeding 1 μg/m3.

None of the samples, obtained with the high volume particu‐late sampler, showed any detectable levels of 2,4‐D, indicating little or no transport of 2,4‐D adsorbed on dust particles or as crystals of amine salts.  相似文献   

6.
Abstract

An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3?rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 μg/m3 hydrochloric acid (standard deviation [SD] ± 0.2 μg/m3); 1.14 μg/m3 nitric acid (SD ± 0.81 μg/m3), and 1.61 μg/m3 sulfuric acid (SD ± 1.58 μg/m3). The citric acid denuders yielded an average concentration of 17.89 μg/m3 NH3 (SD ± 15.03 μg/m3). The filters yielded average fine aerosol concentrations of 1.64 μg/m3 ammonium (NH4 +;SD ± 1.26 μg/m3); 0.26 μg/m3 chloride (SD ± 0.69 μg/m3), 1.92 μg/m3 nitrate (SD ± 1.09 μg/m3), and 3.18 μg/m3 sulfate (SO4 2?; SD ± 3.12 μg/m3). From seasonal variation, the measured particulates (NH4 +,SO4 2?, and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4 2? based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4 + concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

7.
Black carbon (BC), an important component of the atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester, New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 μg/m3, 0.67 μg/m3, 0.60 μg/m3, and 0.52 μg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the U.S. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm – BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor. It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 μg/m3, 1.25 μg/m3, 1.13 μg/m3, and 0.97 μg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the U.S Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease of BC and PM2.5 concentrations during the study period.

Implications: This study suggests that there was an observable impact of the U.S EPA 2007 Heavy-Duty Highway Rule on the ambient black carbon concentrations in Rochester, New York. Aethalometer Delta-C was used as an input variable in source apportionment models and it allowed the separation of traffic (especially diesel) emissions from wood combustion emissions.  相似文献   

8.
Abstract

The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 μg m?3. OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 μg m?3 at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 μg m?3, with some average downwind levels exceeding 500 μg m?3. OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.  相似文献   

9.
Leaves of Tendergreen bean plants exposed to atmospheric fluoride concentrations in the range 1.7 to 7.6 μg/m3 showed increased levels of enolase and catalase activity and decreased levels of pyruvate and α-ketoglutarate. Phosphoenolpyruvate carboxylase activity and oxalacetate were not affected. The leaves of Milo maize plants exposed to 5.0 μg F/m3 showed increased levels of enolase and pyruvate kinase activity and a decreased level of pyruvate. Oxalacetate and α-ketoglutarate levels were not affected. Catalase activity was increased, then decreased by IIF fumigation. The changes induced by HF were greatest six to 10 days after the start of fumigation and disappeared or decreased in magnitude during the post-fumigation period.  相似文献   

10.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

11.
ABSTRACT

The main goal of this study was to evaluate the magnitude of outdoor exposure to fine particulate matter (PM10) potentially experienced by the population of metropolitan Mexico City. With the use of a geographic information system (GIS), spatially resolved PM10 distributions were generated and linked to the local population. The PM10 concentration exceeded the 24-hr air quality standard of 150 μg/m3 on 16% of the days, and the annual air quality standard of 50 μg/m3 was exceeded by almost twice its value in some places. The basic methodology described in this paper integrates spatial demographic and air quality databases, allowing the evaluation of various air pollution reduction scenarios. Achieving the annual air quality standard would represent a reduction in the annual arithmetic average concentration of 14 μg/m3 for the typical inhabitant. Human exposure to particulate matter (PM) has been associated with mortality and morbidity in Mexico City; reducing the concentration levels of this pollutant would represent a reduction in mortality and morbidity and the associated cost of such impacts. This methodology is critical to assessing the potential benefits of the current initiative to improve air quality implemented by the Environmental Metropolitan Commission of Mexico City.  相似文献   

12.

The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

13.
Authors’ Reply     
ABSTRACT

Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 μg/m3 were higher than DPMtp (0.91 μg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m3, respectively) as compared with open (0.44 and 1.3 μg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 μg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m3 for DPMtp and 0.05 μg/m3 for PMck.

IMPLICATIONS PM2.5 measurements in two Seattle school buses showed average concentrations of 26 and 12 μg/m3 with windows closed and open, respectively. Virtually all PM2.5 was car bonaceous. Tracer measurements showed that bus self-pollution contributed approximately 50% of total PM2.5 concentrations with windows closed and 15% with windows open, with over three-quarters of these contributions attributed to crankcase emissions. Maintaining ventilation in buses clearly reduces total PM2.5 exposures and that from the buses' own emissions. The dual tracer method now offers researchers a new technique for explicit identification of single source contributions in settings with multiple sources of carbonaceous emissions.  相似文献   

14.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

15.
Abstract

The purpose of this study was to characterize and measure indoor air quality in public facilities and office buildings. The pollutants of interest were particulate matter smaller than 2.5 μm in diameter, PM-2.5, and environmental tobacco smoke (ETS). Integrated PM- 2.5 samples were taken on Teflon membrane filters using Harvard Aerosol Impactors as a pre-size selector. Filters were analyzed by gravimetric analysis. Nicotine, which was used as a marker for ETS, was collected on sodium-bisulfate-impregnated, glass-fiber filters and was analyzed by gas chromatography. Twenty-one structures were monitored in Metropolitan Boston. Measured particle concentrations ranged from 6.0 μg/m3 to about 550 μg/m3. Nicotine concentrations were as high as 26 μg/m3 in a designated smoking room. Real-time measurements were also taken using two types of nephelometers; a Handheld Aerosol Monitor (HAM) and a Miniature Real-Time Aerosol Monitor (MINIRAM). Short-term field measurements with these instruments correlated better with the integrated PM-2.5 concentrations in smoking locations than with concentrations in non-smoking areas.  相似文献   

16.
Abstract

The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4μg CO2/m2/sec (average of 49.1 ± 42.7 μg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 ± 35.6 ng N2O/m2/sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 μg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 μg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces.  相似文献   

17.
Abstract

A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-β-D-altro-heptulopyranose) in 20 μL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 ± 6% from five filters amended with 2 μg levoglu-cosan, and the reproducibility of the assay is 9%. The limit of detection is ~0.1 μg/mL, which is equivalent to ~3.5 ng/m3 for a 10 L/min sampler or ~8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter ≤2.5 μm or PM with aerodynamic diameter ≤10 μm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

18.
Measurements of airborne (gaseous and aerosol), cloud water, and precipitation concentrations of nitrogen compounds were made at Mt. Mitchell State Park (Mt. Gibbs, ~2006 m MSL), North Carolina, during May through September of 1988 and 1989, An annular denuder system was used to ascertain gaseous (nitric acid, nitrous acid, and ammonia) and particulate (nitrate and ammonium) nitrogen species, and a chemiluminescence nitrogen oxides analyzer was used to measure nitric oxide and nitrogen dioxide. Measurements of NO3 ? and NH4 + ions in cloud and rain water samples were made during the same time period. Mean concentrations of gaseous nitric acid, nitrous acid, and ammonia were 1.14 μg/m3, 0.3 μg/m3, and 0.62 μg/m3 for 1988, and 1.40 μg/m3,0.3 μg/m3, and 1.47 μg/m3 for 1989, respectively. Fine particulate nitrate and ammonium ranged from 0.02 to 0.21 μg/m3 and 0.01 to 4.72 μg/m3 for 1988, and 0.1 to 0.78 μg/m3 and 0.24 to 2.32 μg/m3 for 1989, respectively. The fine aerosol fraction was dominated by ammonium sulfate particles. Mean concentrations of nitrate and ammonium ions in cloud water samples were 238 and 214 μmol/l in 1988, and 135 and 147 μmol/l in 1989, respectively. Similarly, the concentrations of NO3 and NH4 + in precipitation were 26.4 and 14.0 μmol/l in 1988, and 16.6 and 15.2 μmol/l in 1989, respectively. The mean total nitrogen deposition due to wet, dry, and cloud deposition processes was estimated as ~30 and ~40 kg N/ha/year (i.e., ~10 and ~13 kg N/ha/growing season) for 1988 and 1989. Based on an analytical analysis, deposition to the forest canopy due to cloud interception, precipitation, and dry deposition processes was found to contribute ~60, ~20, and ~20 percent, respectively, of the total nitrogen deposition.  相似文献   

19.
This study was conducted to derive receptor-specific outdoor exposure concentrations of total suspended particulate (TSP) and respirable (dae ≤ 10 µm) air manganese (air-Mn) for East Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air measurements were available. Our “site-surface area emissions method” used U.S. Environmental Protection Agency’s (EPA) AERMOD (AMS/EPA Regulatory Model) dispersion model and air measurement data to estimate concentrations for residential receptor sites in the two communities. Modeled concentrations were used to create ratios between receptor points and calibrated using measured data from local air monitoring stations. Estimated outdoor air-Mn concentrations were derived for individual study subjects in both towns. The mean estimated long-term air-Mn exposure levels for total suspended particulate were 0.35 μg/m3 (geometric mean [GM]) and 0.88 μg/m3 (arithmetic mean [AM]) in East Liverpool (range: 0.014–6.32 μg/m3) and 0.17 μg/m3 (GM) and 0.21 μg/m3 (AM) in Marietta (range: 0.03–1.61 μg/m3). Modeled results compared well with averaged ambient air measurements from local air monitoring stations. Exposure to respirable Mn particulate matter (PM10; PM <10 μm) was higher in Marietta residents.

Implications: Few available studies evaluate long-term health outcomes from inhalational manganese (Mn) exposure in residential populations, due in part to challenges in measuring individual exposures. Local long-term air measurements provide the means to calibrate models used in estimating long-term exposures. Furthermore, this combination of modeling and ambient air sampling can be used to derive receptor-specific exposure estimates even in the absence of source emissions data for use in human health outcome studies.  相似文献   

20.
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States–Mexico border. During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14–30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 μg m?3 and biomass stoves 163 to 504 μg m?3. Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 μg m?3). The former is evident in the median and range of daytime PM values (median PM3: 250 μg m?3, maximum: 9411 μg m?3), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 μg m?3, maximum: 10,846 μg m?3). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 μg m?3).
Implications:Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States–Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号