首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

The effects of drop size and formulation upon the spread of pesticide droplets impacting on water‐sensitive papers (WSPs) was investigated. Droplets of diameter 70–350 μm, of four permethrin formulations, were produced using a monosize droplet generator. The droplets were collected on WSPs and in Dow Corning fluid and their diameters measured using a binocular microscope. Spread factors, upon the WSPs, for each dropsize/formulation combination were then calculated. Spread factors varied with both formulation and droplet size and for droplets of 200 and 300 μm diameter spread was significantly correlated with the dynamic surface tension of the formulation. The results suggest that proper calibration of WSPs is necessary for effective droplet sizing.  相似文献   

2.
Abstract

A wind tunnel was used to characterize the droplet size spectra of liquid sprays from several different atomizers and nozzles used under simulated aerial application conditions. The atomizers included a D8–46 nozzle, a Through Valve Boom (TVB) nozzle, and rotary cage and drum atomizers.

The D8–46 hydraulic nozzle was evaluated, using water, at orientations of 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90° relative to 145 and 180 km/h airstreams. The TVB nozzle was evaluated using water, water with isopropyl alcohol, and water with a non‐ionic surfactant at airstream velocities between 130 and 180 km/h. The rotary atomizers were evaluated at different rotation rates, flow rates of water and an insecticide, in 130 and 180 km/h airstreams.

The volumetric droplet size spectra parameters (Dvo.x) decreased as the angle of the D8–46 nozzle and the airstream velocity increased. Empirical models were developed to predict these values for different windspeed and nozzle angle conditions. The TVB nozzle produced larger droplets than the other atomizers under similar conditions, with a decrease in the Dvo.x parameter values as the airstream velocity increased.

The Dvo.x parameter values produced by the rotary atomizers increased as the liquid flow rate increased, and as the rotation rate and airstream velocity decreased, and were lower for the insecticide than for water. The slotted rotary drum atomizer gave the best control over droplet size, generally producing mono‐modal droplet size spectra where the other atomizers often produced bi‐ and multimodal spectra.  相似文献   

3.
Abstract

Most modern pesticides are expensive. Application of excessive dosage rates is likely to cause undesirable biological side‐effects and is economically wasteful. Non‐uniform distribution of the spray cloud, or application at the wrong time, may result in failure to control the pest. It is the responsibility of the field operator to acquire sufficient knowledge and skill to ensure proper use of the control agents, to increase efficiency of their usage and to reduce unwanted side‐effects. To achieve this goal, he must take into consideration the various physical factors that govern field performance of pesticides.

A simple relationship exists between the spray volume and emission rate used, and droplet size produced. The use of extremely low spray volumes (i.e., those less than 2.0 litre per ha) for forest insect control in Canada, as opposed to higher volumes used in agriculture, necessitates the release of fine droplets (ranging from 20 to 70 μm in diameter) to obtain adequate coverage of the target area. These droplets take a long time to sediment downwards, evaporate in‐flight, become smaller in size and/or form powdery residues, thus contributing to off‐target drift and impaired droplet adhesion to target surfaces. Physical factors such as rain washing, degradation by sunlight and erosion by wind also influence the longevity of pesticide deposits on foliage which is crucial during the critical period of pest control.

Factors affecting the mode of entry into insects are related to the type of ingredients used in formulation. If a pesticide acts via crawling contact, formulations which would provide surface deposits would be more beneficial than emulsions or oil‐based mixes which tend to undergo penetration into foliar cuticle. Physical factors that affect field performance of a pesticide tank mix are related to phase separation and ‘breakdown of emulsions’ in the application equipment; ‘agglomeration and caking’ of wettable powder dispersions at the bottom of the tank; impaired flow behaviour of highly viscous formulations; and coarse atomization of high‐viscosity tank mixes leading to poor target cover.  相似文献   

4.
Abstract

Volatilization of 14C‐lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5‐day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparently due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water of the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

5.
The rate of absorption of sulphur dioxide into deliquescent aerosols of MgCl2, NaCl and (NH4)2SO4 has been studied using a radioactive tracing technique. The amount of SO2 absorbed was approximately linear in the calculated liquid water content of the aerosols and reached about 12 mg g−1 water after a reaction time of 145 min. Over the range 1–20 ppm the reaction was zero order in gas phase SO2 concentration. Additional metal catalysts (Mn2+, Fe3+) had relatively small effects on the oxidation rates whilst NO2+ (0–20 ppm) had a large effect on the initial rate but did not significantly increase the final amount of SO2 absorbed. The rates of reaction are shown to be far higher than in pure water and significant reaction continues down to pH 1–2. A detailed model of ionic activities and equilibria in the droplets is developed to aid the interpretation of the results and the implications for natural aerosols such as sea salt assessed.  相似文献   

6.
Abstract

The feeding behavior of gypsy moth larvae exposed to two pesticide deposits (Bt and carbaryl) on oak leaf disks was monitored to determine the relationships between its efficacy and application parameters (droplet density and pesticide concentration). A range of pesticide concentrations and droplet densities (from 9 to 149 droplets/cm2) was used to simulate high and low application rates produced by different methods of application in the field.

The LD50 and the LC50, appeared to be affected by the spatial distribution of the deposit on the leaf surface. Both Bt and carbaryl showed a decreasing LD50 at increasing time after spray. The LD50 of Bt decreased from 14.1 BIU/liter to 3.1 BIU/Iiter between 48 and 144 hours after spray. The results show that feeding inhibition by Bt is more closely related to concentration than to droplet density and dose per unit area with the highest feeding inhibition occurring at 10 BIU/liter at 9 droplets/cm2. With carbaryl, an increase in both concentration and droplet density was necessary to cause a decrease in leaf area eaten by larvae.  相似文献   

7.
An experimental study was conducted to measure the rates of mass transfer from droplets of water under simulated free-fall conditions. These droplets were captured on a wire and air that was conditioned at various temperatures and relative humidities was passed by the pendant droplet in a closed loop wind tunnel facility. Droplets having nominal diameters of 100, 250, and 400 μm generated using a vibrating reed aerosol generator were sized at each time step and the wind tunnel velocity adjusted to the corresponding terminal settling velocity. The droplet diameter was determined using a specially designed, long focal length microscope, with the droplet image projected on to a solid state camera with data acquired and reduced using an on-line microcomputer.The data were used to obtain an equation of the Sherwood number (Sh) as a function of the Reynolds (Re) and Schmidt (Sc) numbers. The resulting correlation equation, Sh = 1.755 + 0.535 (Re12 Sc13) agreed well with data from previous studies, and it is noted that the intercept value is less than that predicted by theory.  相似文献   

8.
Abstract

The effects of well bore volume removal (Vn) on the concentration of alachlor [2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxy methyl) acetamide] and prometon (6‐methoxy‐N,N'‐bis(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine] in ground water obtained from three monitoring wells installed in the Coastal Plain region of North Carolina was investigated. Seasonal effects were also investigated by conducting the exercise in February and May. In the majority of cases, the lowest pesticide concentrations occurred in the initial well bore volume (V1 = stagnant water). Removal of additional well bore volumes (V2 to V10) from two of the wells resulted in pesticide concentrations that did not vary substantially. This indicates that a representative aquifer sample was obtainable, in most cases from these wells, after removal of the initial well bore volume. In contrast, a third well required the purging of two well bore volumes before a stable alachlor concentration was achieved. Seasonal effects of bore volume removal vs. pesticide concentrations for the three wells were not significant (P > 0.05). It was concluded that a protocol for improved accuracy in pesticide analyses of ground water can be obtained by establishing a pesticide concentration‐purging (well bore volume) relationship for each well.  相似文献   

9.
Experiments described in this paper demonstrate that incomplete combustion is a source of gas-phase oxidants. These species, when dissolved in water, are manifested predominantly as H2O2. Experiments involving a fog chamber show that these primary oxidants oxidize SO2 to sulfuric acid or sulfate in fog droplets. Drying such fog droplets results in suspended particles. For a constant SO2 concentration and amount of fuel combusted, the amount of SO2 oxidized and the amount of oxidant produced depend critically on the combustion conditions, being highest for incomplete combustion and negligible for stoichiometric flames.  相似文献   

10.
Abstract

A commercial flowable formulation of tebufenozide, RH‐5992 2F [N'‐t‐butyl‐N'‐(3,5‐dimethylbenzoyl)‐N‐(4‐ethylbenzoyl) hydrazine], was diluted with water, water and canola oil, and water and the methyl ester of canola oil, to provide six end‐use mixes with concentrations of 35 and 70 g of active ingredient (Al) litre‐1. The mixes were applied at 70 and 140 g Al ha‐1 over white spruce [Picea glauca (Moench) Voss] seedlings in a laboratory spray chamber and foliar concentrations of tebufenozide were determined over a 60‐d period. At intervals of time post‐spray, seedlings were sprayed with monosized droplets of Sunspray®11N as rainfall, and the amount of tebufenozide knocked off from foliage was determined. The potential energy of adhesion (PEA) of the Al particles on the foliage increased with time and varied according to the type of end‐use mix, its viscosity and the dosage sprayed.

The end‐use mixes were applied over white spruce trees under field conditions and persistence of tebufenozide was investigated. DT50 values were influenced by the type of mix and dosage sprayed. Oil‐containing mixes and higher dosages increased the PEA of tebufenozide particles.  相似文献   

11.
Abstract

The effect of soil redox conditions on the degradation of metolachlor and metribuzin in two Mississippi soils (Forrestdale silty clay loam and Loring silt loam) were examined in the laboratory. Herbicides were added to soil in microcosms and incubated either under oxidized (aerobic) or reduced (anaerobic) conditions. Metolachlor and metribuzin degradation under aerobic condition in the Forrestdale soil proceeded at rates of 8.83 ngd‐1 and 25 ngd‐1, respectively. Anaerobic degradation rates for the two herbicides in the Forestdale soil were 8.44 ngd‐1 and 32.5 ngd‐1, respectively. Degradation rates for the Loring soil under aerobic condition were 24.8 ngd‐1 and 12.0 ngd‐1 for metolachlor and metribuzin, respectively. Metolachlor and metribuzin degradation rates under anaerobic conditions in the Loring soil were 20.9 ngd‐1 and 5.35 ngd‐1. Metribuzin degraded faster (12.0 ngd‐1) in the Loring soil under aerobic conditions as compared to anaerobic conditions (5.35 ngd‐1).  相似文献   

12.
Abstract

Nine different C18 solid‐phase extraction (SPE) cartridges were evaluated for their efficiency at extracting nine pesticides and two s‐triazine metabolites from spiked deionized water samples. The SPE cartridges were found to contain nitrogen (N) and/or phosphorus (P) contaminants and varied in their extraction efficiency for certain pesticides and metabolites. Four of the nine SPE cartridges gave acceptable (70 to 120%) pesticide and metabolite recovery percentages, while five cartridges had marginal (50 to 70%) to poor (< 50%) recoveries. Statistical analyses showed that the poor to marginal recoveries found for three compounds could not be explained by considering several indigenous chemical and physical traits of the cartridge. It is suggested that proper SPE cartridge selection for pesticide recovery should be evaluated using several different cartridges.  相似文献   

13.
Abstract

Scientific and regulatory interest in ground water contamination by pesticides increased significantly in 1979. This was prompted by findings of the nematicide 1,2‐dibromo‐3‐chloropropane (DBCP) and the nematicide/insecticide aldicarb (Temik®) in ground water in several states. Since that time, at least 130 pesticides and pesticide metabolites have been detected in ground water in over 150 studies, but detection frequencies are 4–10% nationally. Detection frequencies of pesticides over Health Advisory Levels are generally lower. Screening‐level models and detailed computer simulation models are useful for risk assessments and regulatory decisions. Attenuation Factor, CMLS, PRZM2, GLEAMS, and LEACHM are all useful models.  相似文献   

14.
Abstract

Persistence of hexaconazole (2‐(2,4‐dichlorophenyl)‐l‐(lH‐l,2,5‐triazol‐l‐yl) hexan‐2‐ol) was studied in alluvial, red and black soils under flooded and nonflooded conditions. This fungicide was more persistent in all soils under flooded conditions than under nonflooded conditions and at 27°C than at 35°C. Degradation of hexaconazole in sterilized and nonsterilized soils proceeded at identical rates indicating a minor role of micro‐organisms in its degradation. The soil persistence of hexaconazole was not affected by the addition of wheat straw both under flooded and nonflooded conditions.  相似文献   

15.
Abstract

The carbon adsorption method was used for separating organic matter from large samples of drainage, river and tap water. The carbon chloroform extract (CCE) was separated into different solubility fractions and the neutral fraction was separated into aliphatic, aromatic and oxy‐compounds using column chromatography. The aromatic fraction was subjected to TLC, IR and UV analysis. The pesticide endrin was present in both river and tap water at concentrations of 0.7 and 1.5 ppb, respectively.  相似文献   

16.
Abstract

Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler‐irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47‐mm rain falling in a 2‐hour event 24 hours after application of alachlor (2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)‐acetamide) and atrazine (6‐chloro‐N‐ethyl‐N‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its’ solubility were observed. When the herbicides were applied in 64000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally‐treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

17.
Abstract

The persistence and disappearance (washoff or dryfall) of methoxychlor [2,2‐bis(p‐methoxypheny1)‐1,1,1‐trichloroethane] from mature soybean [Glycine max (L.) Merrill] foliage was investigated in a small field plot study under natural rainfall conditions in 1977 and 1978. Residue analyses were conducted using whole plant samples‐ Methoxychlor washoff rate was 8±4% of the amount on plants (prior to rain) per centimeter of rainfall, regardless of time after application. Total seasonal washoff for 1978 accounted for 33.5% of the applied pesticide; however, 30.5% of the total loss was removed by washoff on the second day after application. Dryfall or dislodgeable residue accounted for less than 1% of the amount applied. The amount of dryfall was significantly greater in plots entered by workers than in those where entry was avoided. More than 19% of the applied methoxychlor was lost as a result of through‐fall to the ground during application to the plots. Statistical analyses indicated that within‐sample variation for mechanical chopping of plant samples was significantly smaller at the 5% level than for a hand chopping method. Results from this study will be useful in defining research objectives for the development of algorithms to describe the behavior of foliar‐applied compounds. Such algorithms are necessary for estimating runoff losses of insecticides to water bodies.  相似文献   

18.
The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.  相似文献   

19.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

20.
Abstract

Two commercial formulations of Bacillus thuringiensis var. kurstaki (BTK), Foray® 48B and Thuricide® 48LV, were applied aerially over nine spray blocks in a hardwood forest in West Virginia in 1991. Droplet spectra and spray mass deposits were determined using water‐sensitive paper strips (WSPS), glass micro‐fiber filters (GMFFs), glass plates and castor oil. Mass deposits of BTK were also assessed on natural foliage by two bioassay methods, i.e., feeding of homogenized foliage containing a starch‐sucrose solution and force‐feeding bioassay of foliar extracts containing re‐dissolved protein precipitate. Deposits on canopy foliage and ground samplers were also assessed by total protein assay and enzyme‐linked immunosorbent assay (ELISA). Droplet spectra on the WSPS were different from those on castor oil. Droplets on horizontal ground WSPS were larger than those on vertical ground WSPS. WSPS placed at canopy level collected more droplets than those at ground level. The total protein deposits (ng/cm2) were consistently higher on all blocks than the delta‐endotoxin protein deposits. Spray mass recovery on the ground samplers were low, and ranged from 2.9 to 8.0% of the applied rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号