首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Movement and degradation of 14C‐atrazine (2‐chloro 4‐(ethylamino)‐6‐(isopropylamino)‐s‐triazine, was studied in undisturbed soil columns (0.50m length × 0.10m diameter) of Gley Humic and Deep Red Latosol from a maize crop region of Sao Paulo state, Brazil. Atrazine residues were largely confined to the 0–20cm layers over a 12 month period Atrazine degraded to the dealkylated metabolites deisopropylatrazine and deethylatrazine, but the major metabolite was hydroxyatrazine, mainly in the Gley Humic soil. Activity detected in the leachate was equivalent to an atrazine concentration of 0.08 to 0.11μg/1.

The persistence of 14C‐atrazine in a maize‐bean crop rotation was evaluated in lysimeters, using Gley Humic and Deep Red Latosol soils. Uptake of the radiocarbon by maize plants after 14‐days growth was equivalent to a herbicide concentration of 3.9μg/g fresh tissue and was similar in both soils. High atrazine degradation to hydroxyatrazine was detected by tic of maize extracts. After maize harvest, when beans were sown the Gley Humic soil contained an atrazine concentration of 0.29 μg/g soil and the Deep Red Latosol, 0.13 μg/g soil in the 0–30 cm layer. Activity detected in bean plants corresponded to a herbicide concentration of 0.26 (Gley Humic soil) and 0.32μg/g fresh tissue (Deep Red Latossol) after 14 days growth and 0.43 (Gley Humic soil) and 0.50 μg/g fresh tissue (Deep Red Latossol) after 97 days growth. Traces of activity equivalent to 0.06 and 0.02μg/g fresh tissue were detected in bean seeds at harvest. Non‐extractable (bound) residues in the soils at 235 days accounted for 66.6 to 75% (Gley Humic soil and Deep Red Latossol) of the total residual activity.  相似文献   

2.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   

3.
Abstract

Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O, O‐diethyl O‐(3,5,6‐trichloro‐2‐pyridyl) phosphorothioate) and atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5‐triazine). SSF experiments were carried out in bench‐scale bioreaetors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate‐extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60‐d incubation period at 40°C. The majority of the [2, 6‐pyridyl‐14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C‐U‐ring] atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

4.
Abstract

Mass balance and fate of atrazine‐ 14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   

5.
Abstract

The degradation of 14C‐chlorpyrifos and its hydrolysis product, 3,5,6‐trichloro‐2‐pyridinol (TCP), was investigated in soil in laboratory experiments. Between 12 and 57% of the applied chlorpyrifos persisted in a variety of agricultural soils after a 4‐week incubation. Concentrations of TCP present in these soils ranged from 1 to 34% of the applied dose. Two patterns of persistence were observed. In some soils, significant quantities of TCP and soil‐bound residues were produced, but little 14CO2. In other soils, neither TCP nor soil‐bound residues accumulated, but large quantities of 14CO2 were evolved. Direct treatment of fresh samples of each of these soils with 14C‐TCP resulted in rapid mineralization of TCP to 14CO2 only in those soils in which TCP had not accumulated after chlorpyrifos treatment. The rapid mineralization of TCP in these soils was microbially mediated, but populations of soil microorganisms capable of using TCP as a sole carbon‐energy source were not detected.  相似文献   

6.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

7.
Nag SK  Kookana R  Smith L  Krull E  Macdonald LM  Gill G 《Chemosphere》2011,84(11):1572-1577
We evaluated wheat straw biochar produced at 450 °C for its ability to influence bioavailability and persistence of two commonly used herbicides (atrazine and trifluralin) with different modes of action (photosynthesis versus root tip mitosis inhibitors) in two contrasting soils. The biochar was added to soils at 0%, 0.5% and 1.0% (w/w) and the herbicides were applied to those soil-biochar mixes at nil, half, full, two times, and four times, the recommended dosage (H4). Annual ryegrass (Lolium rigidum) was grown in biochar amended soils for 1 month. Biochar had a positive impact on ryegrass survival rate and above-ground biomass at most of the application rates, and particularly at H4. Within any given biochar treatment, increasing herbicide application decreased the survival rate and fresh weight of above-ground biomass. Biomass production across the biochar treatment gradient significantly differed (< 0.01) and was more pronounced in the case of atrazine than trifluralin. For example, the dose-response analysis showed that in the presence of 1% biochar in soil, the value of GR50 (i.e. the dose required to reduce weed biomass by 50%) for atrazine increased by 3.5 times, whereas it increased only by a factor of 1.6 in the case of trifluralin. The combination of the chemical properties and the mode of action governed the extent of biochar-induced reduction in bioavailability of herbicides. The greater biomass of ryegrass in the soil containing the highest biochar (despite having the highest herbicide residues) demonstrates decreased bioavailability of the chemicals caused by the wheat straw biochar. This work clearly demonstrates decreased efficacy of herbicides in biochar amended soils. The role played by herbicide chemistry and mode of action will have major implications in choosing the appropriate application rates for biochar amended soils.  相似文献   

8.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

9.
Abstract

Bioavailability of fluridone, l‐methyl‐3‐phenyl‐5‐[3‐(trifluoromethyl) phenyl]‐4(1H)‐pyridinone, as affected by soil temperature, soil moisture regime, and duration of incubation was investigated in three soil types by grain sorghum (Sorghum bicolor [L.] Moench cv. Abu Sabien) chlorophyll bioassay. Initial loss of fluridone was rapid and dissipation followed first‐order kinetics under most of the incubation treatments investigated. Soil moisture, in general, had a greater impact than soil temperature on dissipation of fluridone. The herbicide dissipated faster at the fluctuating room temperature (18–24°C) than at the constant 10°C in Sonning sandy clay loam (O.M. = 1.2%) and Erl Wood sandy loam (O.M. = 2.5%) but not in Shropshire loamy peat (O.M. = 33%). In the two mineral soils, bioassay‐detectable residues from an initial rate of 1.00 μg/g were least (0.00 ‐ 0.10 μg/g) at 1/2 field capacity (FC) and greatest (0.16 ‐ 0.37 μg/g) at 1/4 FC, 400 days after treatment. At 10°C, the DT50 values (days) at 1/4 FC and 1/2 FC were, respectively, 147 ± 16 and 69 ± 6 for Erl Wood soil, and 257 ± 28 and 51 ± 12 for Sonning soil. In Shropshire soil, concentrations of bioavailable fluridone were least at each bioassay date when soil moisture was maintained at FC, at both temperatures of incubation. At 10°C, herbicide concentrations in the organic soil from an initial rate of 10.00 μg/g were 0.95 and 4.69 μg/g, respectively, at FC and 1/4 FC.  相似文献   

10.
Abstract

Sorption kinetics of atrazine and diuron was evaluated in soil samples from a typical landscape in Paraná. Samples were collected (0–20 cm) in a no-tillage area from Mamborê, PR, which has been cultivated under a crop rotation for the last six years. Six sampling points of the slope were selected to represent a wide range of soil chemical and physical properties found in this area. Radiolabeled tracers (14C-atrazine and 14C-diuron) were used and the radioactivity was detected by liquid scintillation counting (LSC). Sorption was accomplished for increasing equilibration periods (0.5, 1.5, 3, 6, 12, 24, and 48 h). Kinetics data fitted adequately well to Elovich equation, providing evidences that soil reaction occurs in two distinct stages: a fast, initial one followed by a slower one. During the fast phase, 34–42 and 71–79% of total atrazine and diuron applied were sorbed to soil samples. No important differences were found among combinations of soil and herbicide sorption during the slow phase. The unrealistic conditions under batch experiments should be overestimating sorption in the fast phase and underestimating diffusion in the slow phase. Sorption of both herbicides was positively correlated to organic carbon and clay contents of soils, but atrazine was much less sorbed than diuron, showing its higher potential to contaminate groundwater, specially in sandy, low organic carbon soils.  相似文献   

11.
Investigations were undertaken to determine the adsorption–desorption, persistence and leaching of dithiopyr (S,S′-dimethyl 2-difluoromethyl-4-isobutyl-6-trifluoromethyl pyridine-3,5-dicarbothioate) in an alluvial soil under laboratory condition. The adsorption–desorption studies were carried out using batch equilibration technique. The mass balance studies showed that 83–97% of the pesticide was recovered during adsorption–desorption studies. The results revealed strong adsorption of dithiopyr in alluvial soil with Kd values ranging from 3.97–5.78 and Freundlich capacity factor (KF) value of 2.41. The strong adsorption was evident from the hysteresis effect observed during desorption. The hysteresis coefficients ranged from 0.17–0.40.

The persistence studies were carried out at two concentrations (1.0 and 10.0 μg g?1 level) under field capacity moisture and submerged condition by incubating the treated soil at 25±1°C. In general, dithiopyr persisted beyond 90 days with half-life varying from 11.5–12.9 days under different conditions. The rate of application and moisture regimes had no overall effect on the persistence. The leaching studies carried out in packed column under saturated flow condition revealed that dithiopyr was highly immobile in alluvial soil. Only small amounts (0.02–0.04%) were recovered from leachate whereas major portion (99.9%) remained in top layer of the soil column. The data suggest that strong adsorption of dithiopyr will cause a greater persistence problem in the soil. However, the chances of its movement to ground water will be negligible due to its immobility.  相似文献   

12.
Abstract

The biodegradation of atrazine as influenced by preozonation was studied in biological GAC columns. Metabolism of isopropyl‐14C atrazine produced more 14CO2 than ring‐UL‐14C atrazine, indicating dealkylation was more rapid than ring cleavage. Preozonation increased mineralization of ring‐UL‐14C atrazine and, consequently, enhanced the performance of the GAC columns. Sixty‐two percent of the influent atrazine was converted to 14CO2 in columns that received ozonated atrazine and ozonated surface water, while 50% of the influent atrazine was converted to 14CO2 in columns that received untreated atrazine and ozonated surface water, and only 38% of the influent atrazine was converted to 14CO2 in columns with untreated influent.  相似文献   

13.
Abstract

This study was conducted to evaluate atrazine (2‐chloro‐4‐ethylamino‐6‐isopropyl‐1, 3, 5‐triazine) and alachlor (2‐chIoro‐N‐(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 μg L‐1). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   

14.
Abstract

Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler‐irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47‐mm rain falling in a 2‐hour event 24 hours after application of alachlor (2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)‐acetamide) and atrazine (6‐chloro‐N‐ethyl‐N‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its’ solubility were observed. When the herbicides were applied in 64000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally‐treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

15.
This study elucidates the effect of fluctuating soil moisture on the co-metabolic degradation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) in soil. Degradation experiments with 14C-ring-labelled atrazine were carried out at (i) constant (CH) and (ii) fluctuating soil humidity (FH). Temperature was kept constant in all experiments. Experiments under constant soil moisture conditions were conducted at a water potential of −15 kPa and the sets which were run under fluctuating soil moisture conditions were subjected to eight drying-rewetting cycles where they were dried to a water potential of around −200 kPa and rewetted to −15 kPa. Mineralization was monitored continuously over a period of 56 d. Every two weeks the pesticide residues in soil pore water (PW), the methanol-extractable pesticide residues, the non-extractable residues (NER), and the total cell counts were determined. In the soil with FH conditions, mineralization of atrazine as well as the formation of the intermediate product deisopropyl-2-hydroxyatrazine was increased compared to the soil with constant humidity. In general, we found a significant correlation between the formation of this metabolite and atrazine mineralization. The cell counts were not different in the two experimental variants. These results indicate that the microbial activity was not a limiting factor but the mineralization of atrazine was essentially controlled by the bioavailability of the parent compound and the degradation product deisopropyl-2-hydroxyatrazine.  相似文献   

16.
Abstract

Greenhouse studies were conducted to determine the influence of waste‐activated carbon (WAC), digested municipal sewage sludge (DMS), and animal manure on herbicidal activity of atrazine [2‐chloro‐4‐(ethylamino)‐6‐(isopropylamino)‐s‐trazine] and alachlor [2‐chloro‐2’,6'‐diethyl‐N‐(methoxymethyl)acetanilide] in a Plainfield sandy soil. Amendments generally reduced bioactivity against oat (Avena sativa L.) and Japanese millet (E. crus‐galli frumentacea). The extent to which herbicide phytotoxicity was inhibited depended upon the application rate and the kind of soil amendment. WAC, applied at the loading rate of 2.1 mt C/ha, showed a significant inhibitory effect on both herbicides. In DMS‐ and manure‐amended soil, the reduction of atrazine activity was not significant at the rate of 8.4 mt C/ha, but reduction of alachlor activity was significant at the rate of 4.2 mt C/ha. Despite inhibition of herbicidal activity, the ED50 of atrazine and alachlor was below 2 ppm in most of the amendment treatments. Before adopting carbon‐rich waste amendments as management practices for controlling pesticide leaching in coarse‐textured soils, further studies are needed to characterize how alterations in sorption, leaching and degradation may affect herbicidal activity.  相似文献   

17.
Abstract

The persistence of metsulfuron‐methyl in sandy loam and clay soil incubated at different temperatures and moistures contents was investigated under laboratory conditions using longbean (Vigna sesquipedalis L.) as bioassay species. A significant degradation of metsulfuron‐methyl was observed in non‐autoclaved soil rather than the autoclaved soil sample. At higher temperature, the degradation rate in non‐autoclaved soil improved with increasing soil moisture content. In non‐autoclaved sandy loam and clay soil, the half‐life was reduced from 9.0 to 5.7 and from 11.2 to 4.6 days, respectively when moisture level of sandy loam increased from 20 to 80% field capacity at 35°C. In the autoclaved soil, herbicide residue seems to have been broken down by non‐biological process. The rate of dissipation was slightly increased after the second application of the herbicide to non‐autoclaved soils but not in autoclaved soil, indicating the importance of microorganisms in the breakdown process.  相似文献   

18.
Appendix     
Abstract

An atrazine‐degrading bacterial isolate (M91–3) was able to utilize simazine and cyanazine as N sources for glucose‐dependent growth. The degradation of these three 5‐triazine herbicides was also investigated in binary and ternary mixtures. The organism used atrazine and simazine indiscriminately, whereas cyanazine degradation was slow and delayed until the depletion of the two other herbicides. There was no apparent effect of other commonly used herbicides on the rate of atrazine degradation by M91–3.  相似文献   

19.
Abstract

Disappearance rates of 10 ppm technical diflubenzuron (N(((4‐chloro‐phenyl)amino)carbonyl)‐2,6‐diflurobenzamide, Dimilin®) and BAY SIR 8514 (2‐chloro‐N(((4‐trifluoromethoxyphenyl)amino)carbonyl)benzamide) applied on quartz sand to natural sandy loam and muck soils were significantly greater than for the corresponding sterilized soils, e.g. 47–51% vs. 68–87% BAY SIR 8514 and 2–12% vs. 80–87% diflubenzuron remaining at 12 wk, indicating that soil microorganisms play a major role in their degradation. Kinetic analysis of the data based on a first order dependence on the insecticide concentration showed that the rate constants for these disappearance reactions decreased with time.  相似文献   

20.
Twenty-two years after the last application of ring-14C-labeled atrazine at customary rate (1.7 kg ha−1) on an agriculturally used outdoor lysimeter, atrazine is still detectable by means of accelerated solvent extraction and LC-MS/MS analysis. Extractions of the 0-10 cm soil layer yielded 60% of the residual 14C-activity. The extracts contained atrazine (1.0 μg kg−1) and 2-hydroxy-atrazine (42.5 μg kg−1). Extractions of the material of the lowest layer 55-60 cm consisting of fine gravel yielded 93% of residual 14C-activity, of which 3.4 μg kg−1 was detected as atrazine and 17.7 μg kg−1 was 2-hydroxy-atrazine. The detection of atrazine in the lowest layer was of almost four times higher mass than in the upper soil layer. These findings highlight the fact that atrazine is unexpectedly persistent in soil. The overall persistence of atrazine in the environment might represent a potential risk for successive groundwater contamination by leaching even after 22 years of environmental exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号