共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim J Kim M Hyun S Kim JG Ok YS 《Journal of environmental science and health. Part. B》2012,47(1):22-29
The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f (c) ≤ 0.4) and ionic compositions (CaCl(2) and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K (m) values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f (c). However, the K (m) values of 1-NAPA with both ionic compositions remained relatively constant over the f (c) range. For the model sorbent, the K (m) values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f (c), while the sorption of 1-NAPA with kaolinite for the CaCl(2) system was increased with f (c). From the solubility data of 1-NAPA with f (c), no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required. 相似文献
2.
Fotoula E. Droulia Vaya Kati Constantinos N. Giannopolitis 《Journal of environmental science and health. Part. B》2013,48(5):404-410
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption. 相似文献
3.
Laboratory experiments to estimate the effective molecular diffusion coefficient (D(e)) and sorption coefficient (K(d)) for volatile organic compounds through natural clayey soils were conducted using diffusion testing apparatus. The compounds tested were methyl ethyl ketone (MEK), toluene and trichloroethylene (TCE). The D(e) and K(d) values were determined by a curve fitting procedure. The compound losses, and the effects of porous disks used in the apparatus were significant. The transport of MEK was faster than that of TCE and toluene because of the lower sorption to the soils. The D(e) values of all the compounds were of the order of 10(-10) m(2)/s and smaller than the diffusion coefficient in pure aqueous solution at infinite dilution (D(0)), due to the tortuosity of the samples. The effects of the sample thickness on the parameter determination were not significant. Comparison to the K(d) values estimated from batch sorption tests and from organic carbon content (f(oc))-based predictions showed that the diffusion test results were intermediate between those from the other two methods. The diffusion tests use compacted soil samples and should be more relevant to in situ conditions, but the reliability of the tests is affected by large compound losses that cause uncertainties in their interpretation. It is recommended that more than one method be used to assess K(d) values. 相似文献
4.
Wenxin Liu Weibo Li Xi Ling Jianglin Chen 《Environmental pollution (Barking, Essex : 1987)》2010,158(9):2815-2820
Sorption kinetic characteristics of BDE-28 and BDE-47 on five natural soils with different organic carbon fractions were investigated, and could be satisfactorily described by a two (fast and slow)-compartment first-order model with the ratio of rate constants ranged from 9 to 94 times. The fast compartment made a dominant contribution (71% ∼ 94%) to the total sorption amount in the whole process, and accounted for over 90% of the increase in the total sorption amount at initial 5 h. The influence of the slow compartment on the increase in the total sorption amount became principal (above 90%) in the subsequent stage approximately from 9 h or 25 h to the apparent equilibrium at 265 h. The results proposed the different sorption behaviors of the mathematically classified compartments for BDE-28 and BDE-47, which may correspond to the different soil components, such as soil organic fractions with amorphous and condensed structures, respectively. 相似文献
5.
Three kinds of soils were modified with the cationic surfactants, hexadecyltrimethylammonium (HDTMA) bromide and tetramethylammonium (TMA) bromide to increase their sorptive capabilities. Sorption of chlorobenzene in simulated groundwater by these soils was investigated. HDTMA-modified soil has a higher ability to sorb chlorobenzene from simulated groundwater than unmodified soil. TMA-modified soil did not show the superiority. HDTMA thus can be used to modify soil to improve its sorption capability. Cosorption of chlorobenzene in simulated groundwater in the absence or presence of nitrobenzene and dichloromethane on HDTMA-modified soil was also investigated. Nitrobenzene facilitated sorption of chlorobenzene on all HDTMA-modified soil. Dichloromethane did not influence the sorption of chlorobenzene by HDTMA-modified soil. The results suggest that HDTMA-modified soil is a highly effective sorbent for chlorobenzene and multiple organic compounds did not impede the uptake of chlorobenzene. 相似文献
6.
Ana Beatriz R.J. Passos Marco Antonio M. Freitas Lívia G. Torres Antonio A. Silva Maria Eliana L.R. Queiroz Cláudio F. Lima 《Journal of environmental science and health. Part. B》2013,48(8):646-650
This study was undertaken to obtain information about the behavior of sulfentrazone in soil by evaluating the sorption and desorption of the herbicide in different Brazilian soils. Batch equilibrium method was used and the samples were analyzed by high performance liquid chromatography. Based on the results obtained from the values of Freundlich constants (Kf), we determined the order of sorption (Haplic Planosol < Red-Yellow Latosol < Red Argisol < Humic Cambisol < Regolitic Neosol) and desorption (Regolitic Neosol < Red Argisol < Humic Cambisol < Haplic Planosol < Red-Yellow Latosol) of sulfentrazone in the soils. The process of pesticide sorption in soils was dependent on the levels of organic matter and clay, while desorption was influenced by the organic matter content and soil pH. Thus, the use of sulfentrazone in soils with low clay content and organic matter (low sorption) increases the probability of contaminating future crops. 相似文献
7.
D. Fernández-Calviño P. Soler-Rovira M. Arias-Estévez 《Environmental pollution (Barking, Essex : 1987)》2010,158(12):3634-3641
The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg−1 and Cu concentrations from 11 to 666 mg kg−1. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg−1, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. 相似文献
8.
Sorption and desorption hysteresis of 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, naphthalene, and phenanthrene were investigated for the Borden aquifer material with total organic carbon of 0.021% and the isolated natural organic matter (NOM). The isolated NOM is a kerogen type of organic matter with relatively low maturation degree and contained many different types of organic matters including vitrinite particles. The modified Freundlich sorption capacities (logK′f and logK′foc) are very close for the sorption of the four solutes by the isolated NOM and the original sand, respectively. Isotherm non-linearity (n value) and hysteric behaviors are related to solute molecular properties (e.g. Kow and molecular size). Kerogen encapsulated by inorganic matrices in the original aquifer may not be accessed fully by solutes. The larger the hydrophobic organic chemical (HOC) (hydrophobic organic contaminant) molecule is, the lower accessibility of the HOC to kerogen. This study disputes widely held hypothesis that sorption to mineral surfaces may play a major role in the overall sorption by low TOC (e.g. 0.1% by mass) geomaterials such as Borden sand. It also demonstrates the importance of the condensed NOM domain, even at very low contents, in the sorption and desorption hysteresis of HOCs in groundwater systems. 相似文献
9.
BO PAN BAOSHAN XING WENXIN LIU SHU TAO XIUMEI LIN YANXV ZHANG 《Journal of environmental science and health. Part. B》2013,48(8):1333-1347
Sorption characteristics of phenanthrene (PHE) were studied on eight soils with organic carbon contents spanning over an order of magnitude using phase distribution relationships (PDRs) at 1 h, 48 h, and 720 h contact times. A new algebraic method was employed to describe the sorption characteristics at different time intervals (between 1 h and 48 h, and 1 h and 720 h). It was found that nonlinearity increased with increasing contact time and sorption that occurred in the subsequent time interval following the initial 1 h exhibited stronger isotherm nonlinearity. Sorption coefficients were positively correlated with the organic carbon contents of the soils. Detailed sorption dynamics were also examined on these soils. A two-compartment, first-order model was used to describe the sorption dynamics. The rate constants of the two compartments differed 18–170 times, suggesting the dissimilar sorption behaviors of the mathematically separated compartments. These two compartments were labeled fast and slow sorption compartment according to the rate constants. Calculation showed that the fast compartment accounted for over 80% of the overall sorption at the initial 1 h, while the slow compartment predominated the total sorption in the following 47 h. By combining the discussion of PDRs and sorption dynamics, the contributions of the two compartments to linear and nonlinear sorption were differentiated. The slow sorption compartment made a major contribution to nonlinear sorption and possibly to sequestration of organic pollutants by these soils. 相似文献
10.
Abstract The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper. 相似文献
11.
Liu W Li W Xing B Chen J Tao S 《Environmental pollution (Barking, Essex : 1987)》2011,159(10):2355-2358
Sorption isotherms of BDE-28 and BDE-47 on natural soils with different contents of soil organic matter (SOM) were investigated. Due to low water solubility of BDEs and resulted narrow ranges of aqueous equilibrium concentration, the linear distribution model showed similar and good fitting efficiency to the linear portion of nonlinear Freundlich curve. For the same sample, the linear and nonlinear model fitting sorption coefficients were close. At the statistically significant level of 0.05 or 0.1, significant relationships of total organic carbon fraction (fOC) with the fitting sorption coefficients can be observed. As for BDE-28, the relationships of fOC and SOM fractions with the single point partition coefficients at different aqueous concentrations of BDEs were significant; while for BDE-47, the relationships became less significant or insignificant, especially at higher aqueous concentrations. The findings in this study may facilitate more understanding on transport and fate of studied BDEs in soil systems. 相似文献
12.
Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH 总被引:3,自引:0,他引:3
The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained KOC data were compared with calculated KOC values derived from two different log KOW-log KOC correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pKa in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of KOC, the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied KOC correlations. 相似文献
13.
研究了pH和温度对2,2’,4,4’-四溴联苯醚(BDE-47)在土壤中的吸附和解吸行为的影响。结果表明,pH和温度都可以影响BDE-47在受试土壤中的吸附和解吸行为。pH升高或降低均会使土壤对BDE-47的吸附能力提高,且在碱性环境中提高的程度更大;酸性或碱性条件下BDE-47在土壤中的解吸滞后性显著增强。温度降低后,土壤对BDE-47的吸附能力提高,5℃时的单点分配系数(Kd,表征土壤对BDE-47的吸附能力)是25℃时的1.03~1.67倍;温度由25℃降低到5℃后,BDE-47在土壤中的解吸滞后性增强。 相似文献
14.
The sorption behaviour of the severely toxic heavy metal thallium (Tl) as a monovalent cation onto three representative materials (goethite, pyrolusite and a natural sediment sampled from a field site) was examined as a function of pH in the absence and presence of two natural humic acids (HAs), using 204Tl(I) as a radiotracer. In order to obtain a basic understanding of trends in the pH dependence of Tl(I) sorption with and without HA, sorption of HAs and humate complexation of Tl(I) as a function of pH were investigated as well. In spite of the low complexation between Tl(I) and HAs, the presence of HAs results in obvious alterations of Tl(I) sorption onto pyrolusite and sediment. An influence on Tl(I) sorption onto goethite was not observed. Predictions of Kd (distribution coefficient) for Tl(I) on goethite in the presence of HAs, based on a linear additive model, agree well with the experimental data, while a notable disagreement occurs for the pyrolusite and sediment systems. Accordingly, it is suggested that HAs and goethite may act as a non-interacting sorbent mixture under the given conditions, but more complex interactions may take place between the HAs and the mineral phases of pyrolusite or sediment. 相似文献
15.
S. Navakishore Reddy Suman Gupta Vijay T. Gajbhiye 《Journal of environmental science and health. Part. B》2013,48(11):948-959
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL?1. The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL?1. Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1–25.3%, 9.4–20.7% and 8.1–13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25–0.30) and clay fraction removed soil (0.28–0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible. 相似文献
16.
K. Müller C. Duwig B. Prado C. Siebe C. Hidalgo J. Etchevers 《Journal of environmental science and health. Part. B》2013,48(1):30-41
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity. 相似文献
17.
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process. 相似文献
18.
19.
Jonas O. Vinhal Claudio F. Lima 《Journal of environmental science and health. Part. B》2016,51(7):482-489
The goal of this work was to propose a novel method for the solid-phase extraction of the herbicides diquat (DQT2+) and difenzoquat (DFQT+) from aqueous medium using polymeric Amberlite XAD-2 and XAD-4 resins in the presence of sodium dodecylsulfate (SDS). The addition of SDS to the medium was of fundamental importance in order to allow the formation of a negatively charged surface able to sorb the cationic solutes. Several factors that could influence the sorption process, such as SDS concentration in the medium, sorbent mass, pH, ionic strength, and initial concentration of the solutes were investigated. Kinetic studies were also performed to model the system and to identify the mechanisms that operate the sorption process of the herbicides. SDS concentration in the medium presented remarkable influence on the extraction efficiency, achieving maximum values when the ratios [SDS]/[herbicide] were approximately 90, for XAD-2, and 22 and 11 for DQT2+ and DFQT+, respectively, for XAD-4. The sorption process followed a pseudo second-order kinetic in all cases studied. It was also found that an intraparticle diffusion process controlled exclusively the sorption of the herbicides by the Amberlite XAD-2 and XAD-4 resins in the first 15 min, becoming less active with time. 相似文献
20.
José Fenoll Isabel Garrido Pilar Hellín Pilar Flores Nuria Vela 《Journal of environmental science and health. Part. B》2013,48(8):601-608
In this study, we examined the effect of four different organic wastes (OW)—composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)—on the potential groundwater pollution of propanil and isoxaben (herbicides), cadusafos (insecticide) and pencycuron (fungicide) under laboratory conditions. For this purpose, leaching studies were conducted using disturbed soil columns filled with a clay loam soil (Hipercalcic calcisol). The addition of organic matter (OM) drastically reduced the movement of the studied pesticides. The results obtained point to the interest in the use of agro-industrial and composted OW in reducing the groundwater pollution by pesticide drainage. 相似文献