首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Landsat radiance values were processed at two different (single and double) levels of accuracy to estimate chlorophyll a, turbidity, and suspended sediment in Lake Okeechobee, Florida. Both ordinary least square and ridge regression analyses were used to establish a relationship between water quality parameters and Landsat radiance. Radiance measurements made at greater precision (double level) gave a better solution in this application. The ridge regression analysis for double level not only can reduce the total mean square error about 13–20 percent and confidence interval about 6–28 percent as compared to ordinary least square analysis, but it can also change the interpretation of analysis results.  相似文献   

2.
ABSTRACT: Regional hydrologic procedures such as generalized least squares regression and streamflow record augmentation have been advocated for obtaining estimates of both flood-flow and low-flow statistics at ungaged sites. While such procedures are extremely useful in regional flood-flow studies, no evaluation of their merit in regional low-flow estimation has been made using actual streamflow data. This study develops generalized regional regression equations for estimating the d-day, T-year low-flow discharge, Qd, t, at ungaged sites in Massachusetts where d = 3, 7, 14, and 30 days. A two-parameter lognormal distribution is fit to sequences of annual minimum d-day low-flows and the estimated parameters of the lognormal distribution are then related to two drainage basin characteristics: drainage area and relief. The resulting models are general, simple to use, and about as precise as most previous models that only provide estimates of a single statistic such as Q7,10. Comparisons are provided of the impact of using ordinary least squares regression, generalized least squares regression, and streamflow record augmentation procedures to fit regional low-flow frequency models in Massachusetts.  相似文献   

3.
ABSTRACT: When extensive lengths of river become stabilized (e.g., by channel incision), riverbank erosion can result in considerable riparian land loss and the delivery of large volumes of sediment downstream. The ability to predict the stability and failure geometry of eroding riverbanks is therefore an important prerequisite in estimating the rate of bank erosion and sediment yield associated with bank erosion. In this paper, a new stability analysis for layered river banks is introduced. The new analysis differs from many previous analyses in that it takes into consideration the effects of positive pore water pressure in the saturated portion, and negative pore water pressure in the unsaturated portion, of the bank as well as the influence of hydrostatic confining pressure due to the water level in the river. In addition, the failure plane is not constrained to pass through the toe of the bank and the bank profile geometry is not restricted to an idealized special case. The predictive ability of the new bank stability analysis is assessed using data from two field sites. Subsequently, a methodology for applying the bank stability analysis at the scale of the river reach (0.1 to 10 km) is discussed. This method involves the use of empirical models of bed level adjustment to estimate the magnitude of incision at specific locations along the reach, with these estimates used to drive the stability analysis. Application of the new method is demonstrated with an example.  相似文献   

4.
The use of regression tree analysis is examined as a tool to evaluate hydrologic and land use factors that affect nitrate and chloride stream concentrations during low-flow conditions. Although this data mining technique has been used to assess a range of ecological parameters, it has not previously been used for stream water quality analysis. Regression tree analysis was conducted on nitrate and chloride data from 71 watersheds in the Willamette River Basin to determine whether this method provides a greater predictive ability compared to standard multiple linear regression, and to elucidate the potential roles of controlling mechanisms. Metrics used in the models included a variety of watershed-scale landscape indices and land use classifications. Regression tree analysis significantly enhanced model accuracy over multiple linear regression, increasing nitrate R 2 values from 0.38 to 0.75 and chloride R 2 values from 0.64 to 0.85 and as indicated by the ΔAIC value. These improvements are primarily attributed to the ability for regression trees to more effectively handle interactions and manage non-linear functions associated with watershed heterogeneity within the basin. Whereas hydrologic factors governed the conservative chloride tracer in the model, land use dominated control of nitrate concentrations. Watersheds containing higher agricultural activity did not necessarily yield high nitrate concentrations, but agricultural areas combined with either small proportions of forested land or greater urbanization generated nitrate levels far exceeding water quality standards. Although further refinements are recommended, we conclude that regression tree analysis presents water resource managers a promising tool that improves on the predictive ability of standard statistical methods, provides insight into controlling mechanisms, and helps identify catchment characteristics associated with water quality impairment.  相似文献   

5.
6.
ABSTRACT: Data splitting is used to compare methods of determining “homogeneous” hydrologic regions. The methods compared use cluster analysis based on similarity of hydrologic characteristics or similarity of characteristics of a stream's drainage basin. Data for 221 stations in Arizona are used to show that the methods, which are a modification of DeCoursey's scheme for defining regions, improve the fit of estimation data to the model, but that is is necessary to have an independent measure of predictive accuracy, such as that provided by data splitting, to demonstrate improved predictive accuracy. The methods used the complete linkage algorithm for cluster analysis and computed weighted average estimates of hydrologic characteristics at ungaged sites.  相似文献   

7.
ABSTRACT: Regression and time-series techniques have been used to synthesize and predict the stream flow at the Foresta Bridge gage from information at the upstream Pohono Bridge gage on the Merced River near Yosemite National Park. Using the available data from two time periods (calendar year 1979 and water year 1986), we evaluated the two techniques in their ability to model the variation in the observed flows and in their ability to predict stream flow at the Foresta Bridge gage for the 1979 time period with data from the 1986 time period. Both techniques produced reasonably good estimates and forecasts of the flow at the downstream gage. However, the regression model was found to have a significant amount of autocorrelation in the residuals, which the time-series model was able to eliminate. The time-series technique presented can be of great assistance in arriving at reasonable estimates of flow in data sets that have large missing portions of data.  相似文献   

8.
Water quality regulation and litigation have elevated the awareness and need for quantifying water quality and source contributions in watersheds across the USA. In the present study, the regression method, which is typically applied to large (perennial) rivers, was evaluated in its ability to estimate constituent loads (NO(3)-N, total N, PO(4)-P, total P, sediment) on three small (ephemeral) watersheds with different land uses in Texas. Specifically, regression methodology was applied with daily flow data collected with bubbler stage recorders in hydraulic structures and with water quality data collected with four low-frequency sampling strategies: random, rise and fall, peak, and single stage. Estimated loads were compared with measured loads determined in 2001-2004 with an autosampler and high-frequency sampling strategies. Although annual rainfall and runoff volumes were relatively consistent within watersheds during the study period, measured annual nutrient and sediment concentrations and loads varied considerably for the cultivated and mixed watersheds but not for the pasture watershed. Likewise, estimated loads were much better for the pasture watershed than the cultivated and mixed landuse watersheds because of more consistent land management and vegetation type in the pasture watershed, which produced stronger correlations between constituent loads and mean daily flow rates. Load estimates for PO(4)-P were better than for other constituents possibly because PO(4)-P concentrations were less variable within storm events. Correlations between constituent concentrations and mean daily flow rate were poor and not significant for all watersheds, which is different than typically observed in large rivers. The regression method was quite variable in its ability to accurately estimate annual nutrient loads from the study watersheds; however, constituent load estimates were much more accurate for the combined 3-yr period. Thus, it is suggested that for small watersheds, regression-based annual load estimates should be used with caution, whereas long-term estimates can be much more accurate when multiple years of concentration data are available. The predictive ability of the regression method was similar for all of the low-frequency sampling strategies studied; therefore, single-stage or random strategies are recommended for low-frequency storm sampling on small watersheds because of their simplicity.  相似文献   

9.
为了解高速铁路桥梁段列车运行引起的桥下地面环境振动衰减规律,对京津城际铁路247号桥墩处高速列车桥梁段列车运行时的环境振动进行测试,通过回归分析测试数据,得到了高速铁路桥梁段列车运行时所引起的地面环境振动衰减经验公式,并对现场测试数据与其他预测公式进行比较,分析了预测公式的有效性,为高速铁路引起地面环境振动的预防和治理提供参考。  相似文献   

10.
ABSTRACT: Urban water-quality managers need load estimates of storm-runoff pollutants to design effective remedial programs. Estimates are commonly made using published models calibrated to large regions of the country. This paper presents statistical methods, termed model-adjustment procedures (MAPs), which use a combination of local data and published regional models to improve estimates of urban-runoff quality. Each MAP is a form of regression analysis that uses a local data base as a calibration data set to adjust the regional model, in effect increasing the size of the local data base without additional, expensive data collection. The adjusted regional model can then be used to estimate storm-runoff quality at unmonitored sites and storms in the locality. The four MAPs presented in this study are (1) single-factor regression against the regional model prediction, Pu; (2) least-squares regression against Pu; (3) least-squares regression against Pu and additional local variables; and (4) weighted combination of Pu and a local-regression prediction. Identification of the statistically most valid method among these four depends upon characteristics of the local data base. A MAP-selection scheme based on statistical analysis of the calibration data set is presented and tested.  相似文献   

11.
周红艳  张文阳  李娜 《四川环境》2012,31(3):111-115
在中温且控制pH值条件下,对脂肪类单基质和城市污水厂剩余污泥进行混合厌氧消化试验。基于多元回归原理和BP人工神经网络原理,对其建立产气量预测模型。由实验数据计算得出:两个阶段多元回归模型的预测平均准确率分别为75.69%和79.29%;BP神经网络模型的预测平均准确率为79.05%。通过对比两种模型的预测结果可知,两种模型都有较高的预测准确率,但BP模型的预测准确率更高,更适用于混合厌氧消化产气量预测。  相似文献   

12.
Continuity and accuracy of near real‐time streamflow gauge (streamgage) data are critical for flood forecasting, assessing imminent risk, and implementing flood mitigation activities. Without these data, decision makers and first responders are limited in their ability to effectively allocate resources, implement evacuations to save lives, and reduce property losses. The Streamflow Hydrology Estimate using Machine Learning (SHEM) is a new predictive model for providing accurate and timely proxy streamflow data for inoperative streamgages. SHEM relies on machine learning (“training”) to process and interpret large volumes (“big data”) of historic complex hydrologic information. Continually updated with real‐time streamflow data, the model constructs a virtual dataset index of correlations and groups (clusters) of relationship correlations between selected streamgages in a watershed and under differing flow conditions. Using these datasets, SHEM interpolates estimated discharge and time data for any indexed streamgage that stops transmitting data. These estimates are continuously tested, scored, and revised using multiple regression analysis processes and methodologies. The SHEM model was tested in Idaho and Washington in four diverse watersheds, and the model's estimates were then compared to the actual recorded data for the same time period. Results from all watersheds revealed a high correlation, validating both the degree of accuracy and reliability of the model.  相似文献   

13.
ABSTRACT: In this study three components of the Rosgen Level III Stream Reach Condition Assessment were tested for their ability to predict short-term erosion rates. Rosgen's bank erosion potential (BEP) ratings and near bank stress (NBS) estimates and the Pfankuch channel stability ratings were evaluated. Thirty-six banks with a range of BEP ratings and NBS estimates were selected on the 101 km Upper Illinois River in northeast Oklahoma. The Upper Illinois River is a meandering, gravel-dominated, riffle/pool channel. Cumulative erosion data measured with bank pins after four 2.0 to 2.5-year return period flows from September 1996 to July 1997 were used in the analyses. When integrated as indicated in Rosgen (1996), the BEP indices and NBS estimates were poor predictors of bank erosion. Individually, the grouped BEP ratings and Pfankuch ratings performed relatively well compared to grouped NBS estimates in predicting erosion; however, the variability of erosion was large within each rating group. Linear regression between erosion and BEP numerical indices and Pfankuch scores was significant (a = 0.05), but variability was high (illustrated by low r2 values). Regression between erosion and NBS estimates was not significant.  相似文献   

14.
15.
A multiple regression analysis was used to develop two predictive models of lower heating value (LHV) for municipal solid waste (MSW), using 180 samples gathered from cities and counties in Taiwan during 2001-2002. These models are referred to as the original proposed model (OPM) and the simplified model (SM). The coefficients of multiple determinations for the OPM and SM were 0.983 and 0.975, respectively. To verify the feasibility of the models, a demonstration program based on sampling of MSW in Kaohsiung City was conducted. As a result, the OPM showed superior precision in terms of relative percentage deviation (RPD) and mean absolute percentage error (MAPE), when compared to the conventional models based on the proximate analysis, physical composition and ultimate analysis. The SM was derived by neglecting the three minor physical components used in the OPM. The resulting SM was less precise when compared to the OPM, but it was still acceptable, with a precision level better than the conventional models. It was concluded that the predictability of empirical models could be improved significantly through selection of the appropriate physical components and multiple regression analysis.  相似文献   

16.
ABSTRACT: Regression models are presented that can be used to estimate mean loads for chemical oxygen demand, suspended solids, dissolved solids, total nitrogen, total ammonia plus nitrogen, total phosphorous, dissolved phosphorous, total copper, total lead, and total zinc at unmonitored sites in urban areas. Explanatory variables include drainage area, imperviousness of drainage basin to infiltration, mean annual rainfall, a land-use indicator variable, and mean minimum January temperature. Model parameters are estimated by a generalized-least-squares regression method that accounts for cross correlation and differences in reliability of sample estimates between sites. The regression models account for 20 to 65 percent of the total variation in observed loads.  相似文献   

17.
Building a community that is resilient to disasters has become one of the main goals of disaster management. Communities that are more disaster resilient often experience less impact from the disaster and reduced recovery periods afterwards. This study develops a methodology for constructing a set of indicators measuring Community Disaster Resilience Index (CDRI) in terms of human, social, economic, environmental, and institutional factors. In this study, the degree of community resilience to natural disasters was measured for 229 local municipalities in Korea, followed by an examination of the relationship between the aggregated CDRI and disaster losses, using an ordinary least squares (OLS) regression method and a geographically weighted regression (GWR) method. Identifying the extent of community resilience to natural disasters would provide emergency managers and decision-makers with strategic directions for improving local communities' resilience to natural disasters while reducing the negative impacts of disasters.  相似文献   

18.
Earthen embankment dams comprise 85% of all major operational dams in the United States. Assessment of peak flow rates for these earthen dams and the impacts on dam failure are of high interest to engineers and planners. Regression analysis is a frequently used risk assessment approach for earthen dams. In this paper, we present a decision support tool for assessing the applicability of nine regression equations commonly used by practitioners. Using data from 108 case studies, six parameters were observed to be significant factors predicting for peak flow as a metric for risk analysis. We present our work on an expanded earthen dam break database that relates the regression equations and underlying data. A web application, regression selection tool, is also presented to assess the appropriateness of a given model for a given test point. This graphical display allows users to visualize how their data point compares with the data used for the regression equation. These contributions improve estimates and better inform decision makers regarding operational and safety decisions.  相似文献   

19.
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined.  相似文献   

20.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号