首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Movement of bromacil and hexazinone in soils of Hawaiian pineapple fields   总被引:1,自引:0,他引:1  
Zhu Y  Li QX 《Chemosphere》2002,49(6):669-674
Bromacil and hexazinone have been heavily used to control weeds in the pineapple fields in central Oahu, Hawaii, USA, since 1970s and 1980s, respectively. The last application prior to this study was at a rate of 0.6 kg active ingredient (a.i.) ha(-1) for hexazinone and 1.8 or 3.4 kg (a.i.) ha(-1) for bromacil in the six study fields during June-October 1998. Soils were collected from 0 to 1860 cm below the surface in January-May 1999 to survey the residue profiles of the two herbicides. Stratoprobe sampling showed to be an efficient and convenient method for deep soil cores. Bromacil was detected in all the soil samples above 60 cm (105-1338 ng g(-1) dry weight) and in 74% of the samples above 400 cm (26-473 ng g(-1)). Trace amounts of bromacil (90-113 ng g(-1)) were detected in some of the samples collected from as deep as 1540 cm. Hexazinone was detected in three of the six fields at 0-60 cm only (86-107 ng g(-1) dry weight). The more frequent detection of bromacil at higher concentrations than hexazinone is related to the prolonged higher application rates of bromacil in the fields and its higher persistence and mobility in soil.  相似文献   

2.
Abstract

Field microplots were treated with 141 and 282 ppm fensulfothion and 37.1 and 74.2 ppm fensulfothion sulfone. These concentrations are equivalent to field treatment rates of 8.48 and 16.96 kg Al/ha, fensulfothion, and 2.23 and 4.47 kg Al/ha, fensulfothion sulfone, respectively, for banded application (10 cm wide, rows 80 cm apart). The half‐lives in a sandy loam soil were 30–39 and 14–23 days, respectively. Fensulfothion sulfone and sulfide were the main derivatives found in fensulfothion treated soil.

The maximum levels of these derivatives were 21.22 and 22.95 ppm, respectively for the 8.48 kg/ha treatment and 33.90 and 42.45 ppm, respectively, for the higher treatment, which occurred between 30–60 days.

Carrots appeared to take up more fensulfothion from soil than rutabagas or radishes. The residue levels at harvest decreased in the order carrot peel > pulp > rutabagas root > peel > pulp. Residue levels of fensulfothion and sulfone in radishes were similar to those found in rutabagas. The ratio sulfoxide/sulfone in rutabagas ranged from 0.4–1.5 and in carrots from 1.7–7.6. This phenomenon is thought to be due to oxidative enzyme systems present in rutabagas. Dimethyl phosphorothioic acid, but not dimethyl phosphoric acid was detected (max. 1.33 ppm) in some rutabagas samples but not in carrots.  相似文献   

3.
Abstract

The quality of many golf courses and other turfgrass areas often requires high levels of cultural management. The fact that this level of maintenance usually includes the use of preemergent herbicides has caused concern about their potential for ground water contamination. Much of this concern is based on extrapolation from agricultural situations rather than data developed from studies conducted in field turfgrass situations. To address this data gap, a two‐year field project evaluating the behaviour and mobility of the commonly used preemergent herbicides, benfluralin, trifluralin, bensulide, oxadiazon. pendimethalin, and DCPA with its two metabolites was conducted at OARDC/The Ohio State University, Wooster, Ohio, in 1988–89. Plots were located on a site with thatch (WT) and one with no thatch (NT)to further clarify the impact of thatch on herbicide behavior. Treatments were applied in April and samples of thatch and four zones of soil (0–2.5, 2.5–5, 7.5–10 and 22.5–25cm) were collected throughout the year and analyzed for residue dissipation. Residues of pendimethalin, benfluralin, and trifluralin in the 22.5–25 cm zone were below the limit of determination. No detectable oxadiazon residues were found in this zone at the WT site in 1988 but on two occasions, residues of 0.01 and 0.02 kg/ha were found in 1989. At the NT site, residues in this zone on one occasion were 0.02 kg/ha in 1988 and none in 1989. Residues of bensulide in the same zone ranged not detectable (ND)‐0.02 kg/ha in both locations. The DCPA residues in the 22.5–25 cm zone ranged ND‐0.10 kg/ha (WT), ND‐0.27 kg/ha (NT) in 1988. and ND‐0.02 kg/ha (WT), ND‐0.04 kg/ha (NT) in 1989. The residues of SDS 1449, the less stable of two dacthal metabolites, were very low but higher in 1988 than in 1989 in both locations. The SDS 954 residues in 22.5–25 cm zone ranged ND‐0.1 kg/ha (WT), and ND‐0.16 kg/ha (NT) in 1988, and ND‐0.26 kg/ha (WT), and ND‐0.27 kg/ha (NT) in 1989.

Some amount of all herbicides applied carried over into the spring of the year following application but oxadiazon and bensulide were the most persistent.  相似文献   

4.
Abstract

Fenvalerate EC at 140 g AI/ha was applied 7 times at 2 wk intervals to duplicate plots of Plainfield sand and an organic soil contained in 2.2 x 0.9 m field microplots with and without an onion crop present in 1980 and 1981 respectively. Soil samples were taken immediately before and after each application and at 2, 4, and 6 wk after the last application in 1980. Additional samples were taken at 22 and 34 wk for the 1981 treatment. Concentrations of fenvalerate were determined by glc. In the crop‐free mineral soil, fenvalerate levels declined from. 0.07–0.11 ppm immediately after spraying to 0.01–0.03 ppm after 2 wk; in the organic soil the rate of addition of fenvalerate exceeded the rate of disappearance and the concentration in the soil gradually increased over the 14 wk treatment period to the 0.9–1.0 ppm range. This concentration decreased slowly over the next 10 wk to 0.7–0.8 ppm and was still 0.5–0.7 ppm the following spring. Results were similar for cropped soils. Concentrations in the top third of the 15 cm cores were 6x and 15x those in the middle third for sand and organic soil, respectively. Concentrations, in the onions at harvest were <0.01 ppm.  相似文献   

5.
The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3–5.7) years, DDE 5.3 (4.7–6.1) years, and heptachlor epoxide 4.3 (3.8–4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.  相似文献   

6.
Field microplots were treated with 141 and 282 ppm fensulfothion and 37.1 and 74.2 ppm fensulfothion sulfone. These concentrations are equivalent to field treatment rates of 8.48 and 16.96 kg AI/ha, fensulfothion, and 2.23 and 4.47 kg AI/ha, fensulfothion sulfone, respectively, for banded application (10 cm wide, rows 80 cm apart). The half-lives in a sandy loam soil were 30-39 and 14-23 days, respectively. Fensulfothion sulfone and sulfide were the main derivatives found in fensulfothion treated soil. The maximum levels of these derivatives were 21.22 and 22.95 ppm, respectively for the 8.48 kg/ha treatment and 33.90 and 42.45 ppm, respectively, for the higher treatment, which occurred between 30-60 days. Carrots appeared to take up more fensulfothion from soil than rutabagas or radishes. The residue levels at harvest decreased in the order carrot peel greater than pulp greater than rutabagas root greater than peel greater than pulp. Residue levels of fensulfothion and sulfone in radishes were similar to those found in rutabagas. The ratio sulfoxide/sulfone in rutabagas ranged from 0.4-1.5 and in carrots from 1.7-7.6. This phenomenon is thought to be due to oxidative enzyme systems present in rutabagas. Dimethyl phosphorothioic acid, but not dimethyl phosphoric acid was detected (max. 1.33 ppm) in some rutabagas samples but not in carrots.  相似文献   

7.
We investigated dissipation and sorption of atrazine, terbuthylazine, bromacil, diazinon, hexazinone and procymidone in two contrasting New Zealand soils (0–10 cm and 40–50 cm) under controlled laboratory conditions. The six pesticides showed marked differences in their degradation rates in both top- and subsoils, and the estimated DT50 values for the compounds were: 19–120 (atrazine), 10–36 (terbuthylazine), 12–46 (bromacil), 7–25 (diazinon), 8–92 (hexazinone) and 13–60 days for procymidone. Diazinon had the lowest range for DT50 values, while bromacil and hexazinone gave the highest DT50 values under any given condition on any soil type. Batch derived effective distribution coefficient (K d eff) values for the pesticides varied markedly with bromacil and hexazinone exhibiting low sorption affinity for the soils at either depth, while diazinon gave high sorption values. Comparison of pesticide degradation in sterile and non-sterile soils suggests that microbial degradation was the major dissipation pathway for all six compounds, although little influence of abiotic degradation was noticeable for diazinon and procymidone.  相似文献   

8.
Conservation tillage mitigates soil loss in cropland because plant residues help protect the soil, but effects on pesticide movement in surface runoff are not as straightforward. Effects of soil disturbance on surface runoff loss of chlorimuron and alachlor were evaluated utilizing runoff trays. Soil in the trays was either disturbed (tilled) and kept bare or was not tilled, and existing decomposed plant residue was left on the surface. Rainfall (25mm, 20min) was simulated 1d after alachlor (2.8kg ha(-1)) or chlorimuron (54g ha(-1)) application, and runoff was collected. Runoff fractions were analyzed for herbicide and sediment. Total alachlor loss from bare plots was greater than that in no-tillage plots (4.5% vs. 2.3%, respectively). More than one-third of total alachlor lost from bare plots occurred in the first l of runoff, while no-tillage plots had less runoff volume with a more even distribution of alachlor concentration in the runoff during the rainfall simulation and subsequent runoff period. In contrast, more chlorimuron was lost from no-tillage plots than bare plots (12% vs. 1.5%) even though total runoff volume was lower in the no-tillage plots (10.6mm vs. 13.6mm). This was attributed to dense coverage with partially decomposed plant residue in no-tillage plots (1652kg ha(-1)) that intercepted chlorimuron. It was likely that chlorimuron, a polar compound, was more easily washed off surface plant residues and transported in runoff.  相似文献   

9.
Abstract

Bioavailability of fluridone, l‐methyl‐3‐phenyl‐5‐[3‐(trifluoromethyl) phenyl]‐4(1H)‐pyridinone, as affected by soil temperature, soil moisture regime, and duration of incubation was investigated in three soil types by grain sorghum (Sorghum bicolor [L.] Moench cv. Abu Sabien) chlorophyll bioassay. Initial loss of fluridone was rapid and dissipation followed first‐order kinetics under most of the incubation treatments investigated. Soil moisture, in general, had a greater impact than soil temperature on dissipation of fluridone. The herbicide dissipated faster at the fluctuating room temperature (18–24°C) than at the constant 10°C in Sonning sandy clay loam (O.M. = 1.2%) and Erl Wood sandy loam (O.M. = 2.5%) but not in Shropshire loamy peat (O.M. = 33%). In the two mineral soils, bioassay‐detectable residues from an initial rate of 1.00 μg/g were least (0.00 ‐ 0.10 μg/g) at 1/2 field capacity (FC) and greatest (0.16 ‐ 0.37 μg/g) at 1/4 FC, 400 days after treatment. At 10°C, the DT50 values (days) at 1/4 FC and 1/2 FC were, respectively, 147 ± 16 and 69 ± 6 for Erl Wood soil, and 257 ± 28 and 51 ± 12 for Sonning soil. In Shropshire soil, concentrations of bioavailable fluridone were least at each bioassay date when soil moisture was maintained at FC, at both temperatures of incubation. At 10°C, herbicide concentrations in the organic soil from an initial rate of 10.00 μg/g were 0.95 and 4.69 μg/g, respectively, at FC and 1/4 FC.  相似文献   

10.

Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS?+?TiO2, 100 g/kg SS, and 100 g/kg SS?+?TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS?+?TiO2 showed a significant (p?<?0.05) increase in the okra plant yield (287.87?±?4.06 g/plant) and other biochemical parameters such as fruit length (13.97?±?0.54 cm), plant height (75.05?±?3.18 cm), superoxide dismutase (SOD: 110.68?±?3.11 μ/mg), catalase (CAT: 81.32?±?3.52 μ/mg), and chlorophyll content (3.12?±?0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe?>?Mn?>?Cu?>?Zn?>?Cr?>?Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.

  相似文献   

11.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha(- 1). Terbuthylazine was applied to both plots at a rate of 2 kg ha(- 1) a.i. Triplicates from each plot were sampled at 3 depths (0-10, 10-20 and 20-30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

12.
Abstract

[Carbonyl‐ C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0–2,5 cm soil layer was removed from the lysimeter. This soil contained about 40 % of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non‐extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3,6; 2,2; and 0,9 % of the radioactivity from soils containing aged MBT residues, MBT residues non‐extractable‐with 0,01 MCaCl2 or MBT residues non‐extractable with organic solvents, respectively. About 20 % of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0,01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

13.
An experimental study was conducted in order to determine the relationship of nitric oxide (NO) consumption to water-filled pore space in soil. A test system that included the capability to blend gases, test soil samples, and analyze off-gases was used to conduct the study. The experimental set consisted of three replicates at five different levels of soil water content and three different levels of soil nitrogen in a sandy loam soil: unamended soil, soil fertilized at 56.2 kg N per ha (50 lb N acre(-1)), and soil fertilized at 112.3 kg N per ha (100 lb N acre(-1)). The average NO consumption rates were 7.1x10(-13) g-NO cm(-3) soil, 3.5x10(-11) g-NO cm(-3) soil, and 1.5x10(-10) g-NO cm(-3) soil, respectively.  相似文献   

14.
《Chemosphere》1987,16(6):1273-1279
Uptake of Carbofuran-14C by rice plants after root zone application of a EVA based controlled release formulation and of Furadan as a conventional control was investigated under field conditions. Using 3.6–3.9 kg a.i./ha, 14C-concentrations in grain (1.3–1.8 mg/kg) and straw (15.9–16.1 mg/kg) were in the same range for both formulations, while contamination of paddy water and soil (at μg/kg level) has been 30–40% lower in plots treated with EVA formulation than with Furadan. Besides slowing down the release of a.i., EVA matrix also prevents an early hydrolysis of incorporated Carbofuran to Carbofuranphenol and keeps therefore its insecticidal efficacy.  相似文献   

15.
Abstract

Aldicarb, Temik® 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredent)/ha and carrots (Caucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/ 50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 6l to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot > in soil > in hydroponic solution.  相似文献   

16.
Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied in field plots located on a Commerce clay loam soil near Baton Rouge, Louisiana at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The half-lives of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth were found to be 54.7 days, 35.8 days and 29.8 days, respectively. The proportion of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth was 94.7%, 86.6%, and 75.4%, respectively of that found in the top 0-60 cm soil depth 30 days after application. Trifluralin concentrations were within a range of 0.026 ng/mL to 0.058 ng/mL in 1 m deep well water, and between 0.007 ng/mL and 0.039 ng/mL in 2 m deep well water over a 62 day period after application. Metolachlor concentrations in the 1 m and 2 m wells ranged from 3.62 ng/mL to 82.32 ng/mL and 8.44 ng/mL to 15.53 ng/mL, respectively. Whereas metribuzin concentrations in the 1 m and 2 m wells ranged from 0.70 ng/mL to 27.75 ng/mL and 1.71 ng/mL to 3.83 ng/mL, respectively. Accordingly, trifluralin was found to be strongly adsorbed on the soil and showed negligible leaching. Although metolachlor and metribuzin were also both readily adsorbed on the soil, their leaching potential was high. As a result, in the clay loam soil studied, metribuzin concentration in groundwater with shallow aquifers is likely to exceed the 10 mg/L US Environmental Protection Agency (EPA) advisory level for drinking water early in the application season, whereas trifluralin and metolachlor concentrations are expected to remain substantially lower than their respective 2 ng/mL and 175 ng/mL EPA advisory levels.  相似文献   

17.
Baits containing brodifacoum rodenticide were aerially applied to eradicate invasive black rats from Palmyra Atoll, an important biodiversity center. Bait application must be sufficient to be effective, while minimizing environmental hazards by not exceeding designated label rates, prompting our bait density assessments for two aerial drops. With few physical or human resources on this remote, uninhabited atoll, assessments were particularly challenging, requiring observations within 30 min of aerial application to avoid bait loss to rats, crabs, or elements. We estimated bait density using quadrat sampling within 13 terrestrial sampling areas. We also sampled 10 tidal flat areas to assess inadvertent bait scatter into marine aquatic environments. Of particular value for challenging sampling circumstances, our quadrats had to be lightweight and durable, which we addressed by using widely available PVC hoops (“Hula Hoops”), the size of which was ideal for sampling purposes. At 77.5 and 78.7 kg/ha, overall bait densities were very near to the target densities of 80 and 75 kg/ha, respectively. However, considerable variability in bait densities existed among sampled areas, 8.6–178.2 and 31.4–129.5 kg/ha for the respective drops, respectively. Environmental, human, and equipment factors likely accounted for this variability. Tidal flat sampling revealed variable bait scatter into aquatic environments, from 0–46.3 kg/ha across the two drops. No differences were found in average bait densities among 1-, 4-, and 7-m distances from high tide lines. Our methods might broadly assist bait density (and other) surveys under challenging circumstances.  相似文献   

18.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   

19.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

20.
Anderson R  Xia L 《Chemosphere》2001,42(2):171-178
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号