首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper demonstrates how wind tunnel modeling data that accurately describe plume characteristics near an unconventional emission source can be used to improve the near-field downwind plume profiles predicted by conventional air pollution dispersion models. The study considers a vertical, cylindrical-shaped, elevated bin similar to large product storage bins that can be found at many industrial plant sites. Two dispersion models are considered: the U.S. Environmental Protection Agency's ISC2(ST) model and the Ontario Ministry of the Environment and Energy's GAS model. The wind tunnel study showed that plume behavior was contrary to what was predicted using conventional dispersion models such as ISC2(ST) and GAS and default values of input parameters. The wind tunnel data were used to develop a protocol for correcting the dispersion models inputs, resulting in a substantial improvement in the accuracy of the dispersion estimates.  相似文献   

2.
Non-migration is an adaptive strategy that has received little attention in environmental migration studies. We explore the leveraging factors of non-migration decisions of communities at risk in coastal Bangladesh, where exposure to both rapid- and slow-onset natural disasters is high. We apply the Protection Motivation Theory (PMT) to empirical data and assess how threat perception and coping appraisal influences migration decisions in farming communities suffering from salinization of cropland. This study consists of data collected through quantitative household surveys (n = 200) and semi-structured interviews from four villages in southwest coastal Bangladesh. Results indicate that most respondents are unwilling to migrate, despite better economic conditions and reduced environmental risk in other locations. Land ownership, social connectedness, and household economic strength are the strongest predictors of non-migration decisions. This study is the first to use the PMT to understand migration-related behaviour and the findings are relevant for policy planning in vulnerable regions where exposure to climate-related risks is high but populations are choosing to remain in place.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01552-8.  相似文献   

3.
4.
ABSTRACT

The Clean Air Act mandates that sensitive subpopulations be considered in setting standards to protect the public's health. The purposes of this paper are to point out different conceptualizations of susceptibility, examine how it is approached in risk-related processes, and recommend ways it may be more explicitly framed for risk assessment and management purposes. We studied the traditional risk assessment paradigm, the U.S. Environmental Protection Agency (EPA) guidelines and revised PM standard, discussions from recent interdisciplinary meetings, and peer-reviewed literature. Areas of controversy include what factors intrinsic and extrinsic to the host should be incorporated in susceptibility, what health endpoints are of concern, whether susceptibility is deterministic or stochastic, and whether it should be defined on an individual or population scale. Recent discussions about susceptibility applied to PM indicate that it needs to be more clearly defined and evaluated for scientific and policy purposes. We conclude that varying concepts of susceptibility can affect risk-related processes such as PM standard setting. We recommend that susceptibility be clearly defined in the problem statement of risk assessments and be addressed in a specific subsection of risk characterization, integrating all susceptibility findings from the prior three  相似文献   

5.
Abstract

The 1990 Clean Air Act amendments require the U.S. Environmental Protection Agency (EPA) to set guidelines for states to follow in designing and running vehicle inspection and maintenance (I/M) programs. Included in this charge was a requirement to implement an on‐board diagnostic (OBD) test for both basic and enhanced I/M programs. This paper provides the results to date of an ongoing EPA study undertaken to assess the durability of the OBD system as vehicles age and as mileage is accrued. The primary results of this effort indicate the points described below. First, the majority of high‐mileage vehicles tested had emission levels within their certification limits, and their malfunction indicator light (MIL) was not illuminated, indicating that the systems are capable of working throughout the life of a vehicle. Second, OBD provides better air quality benefits than an IM240 test (using the federal test procedure [FTP] as the benchmark comparison). This statement is based on greater emissions reductions from OBD‐directed repairs than reductions associated with IM240‐identified repairs. In general, the benefits of repairing the OBD fails were smaller, but the aggregate benefits were greater, indicating that OBD tests find both the high‐emitting and a number of marginally high‐emitting vehicles without false failures that can occur with any tailpipe test. Third, vehicles that truly had high‐tailpipe emissions as confirmed by laboratory IM240 and FTP testing also had illuminated MILs at a statistically significant level. Last, field data from state programs have demonstrated MIL illumination rates comparable with those seen in this work, suggesting that the vehicles sampled in this study were representative of the larger fleet. Nonetheless, it is important to continue the testing of high‐mileage OBD vehicles into the foreseeable future to ensure that the systems are operating correctly as the fleet ages and as changes in emission certification levels take effect.  相似文献   

6.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

7.
The U.S. Environmental Protection Agency's program to assess the public health significance of diesel emissions is described. The reasons for the EPA concern over diesel exhaust products are discussed. Some results of EPA research efforts over the last nine months are summarized and preliminary conclusions are drawn. Finally, the planned future health experiments which will hopefully fill some remaining gaps in our knowledge are identified.  相似文献   

8.
Shan  Danping  Zhang  Tao  Li  Ludi  Sun  Yuqing  Wang  Di  Li  Yingzi  Yang  Zheng  Cui  Kanglong  Wu  Shaowei  Jin  Lei  Hong  Bo  Shang  Xuejun  Wang  Qi 《Environmental science and pollution research international》2022,29(49):74003-74011

Diet is an important exposure route for phthalates, such as di-iso-butyl phthalate (DiBP), dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). In this study, we aimed to estimate phthalate exposure in the diet of pregnant women and assess the health risk. A total of 517 pregnant women in the first trimester were recruited, and food frequency questionnaires were collected. A simple distribution assessment method was used to estimate daily exposure, and the hazard index (HI) method was used to assess cumulative risk. The maximum daily dietary exposure to DEHP, DBP, DiBP, and BBP was 5.25, 3.17, 2.59, and 0.58 μg/kg bw/day, respectively, and did not exceed the safety limit values. Cereals and vegetables were the main sources of the estimated daily intake (EDI) of phthalates in the diet. The cumulative risk assessment, based on the European Food Safety Authority tolerable daily intake (TDI) and the US Environmental Protection Agency reference dose (RfD), did not exceed the threshold of 1. DiBP, DBP, and DEHP had higher hazard quotient (HQ) values for cumulative health risk than BBP. In conclusion, a low health risk was posed by the cumulative dietary exposure to phthalates for pregnant women in Beijing.

Graphical abstract
  相似文献   

9.
ABSTRACT

Researchers from the National Renewable Energy Laboratory recently conducted a pilot-scale study at McClellan Air Force Base (AFB) in Sacramento, CA. The objective of the test was to determine the effectiveness of an ambient-temperature, solar-powered photocatalytic oxidation treatment unit for destroying emissions of chlorinated organic compounds from an air stripper. This paper reports test results and discusses applications and limitations of the technology.

A 10-standard-cubic-foot-per-minute (SCFM) (28.3 L/min) slip stream of air from an air stripper at Operative Unit 29-31 at McClellan AFB was passed through a reactor that contained a lightweight, perforated, inert support coated with photoactive titanium dioxide. The reactor faced south and was tilted at a 45° angle from vertical so that the light-activated catalyst received most of the available sunlight. An online portable gas chro-matograph with two identical columns simultaneously analyzed the volatile organic compounds contained in the reactor inlet and outlet air streams. Summa canister grab samples of the inlet and outlet were also collected and sent to a certified laboratory for U.S. Environmental

Protection Agency Method TO-14 analysis and verification of our field analyses. Three weeks of testing demonstrated that the treatment system's destruction and removal efficiencies (DREs) are greater than 95% at 10 SCFM with UV intensities at or greater than 1.5 milliwatts/square centimeter (mW/cm2). DREs greater than 95% at 20 SCFM were obtained under conditions where UV irradiation measured at or greater than 2 mW/cm2. In Sacramento, this provided 6 hours of operation per clear or nearly clear day in April. A solar tracking system could extend operating time. The air stream also contained trace amounts of benzene. We observed no loss of system performance during testing.  相似文献   

10.
Abstract

We determined the usefulness of tapered element oscillating microbalances (TEOMs) for researchers and engineers involved with measuring diesel particulate mass. Two different test facilities were used for generating diesel particulates and comparing the TEOM to the commonly used U.S. Environmental Protection Agency (EPA) manual filter method. The EPA method is very labor-intensive and requires long periods of time to complete. The TEOM is an attractive approach because it has the potential to reduce the amount of time and labor required in diesel testing, as well as to provide real-time particulate-mass data that are not obtainable with the EPA method. It was found that the TEOM was a precise and easy-to-operate instrument that could measure the mass concentration (MC) of diesel particulate emissions in real time. Although the TEOM diesel particulate MC measurements were highly correlated with the manual filter measurements, the two techniques were not equivalent because the TEOM consistently reported MC results that were 20–25% lower than those obtained using the manual filter technique. In conclusion, the TEOM can be used to increase test-cell throughput and to measure transient values of diesel par-ticulate emissions at sites performing diesel-engine testing. However, unless EPA is able to certify the TEOM as an equivalent method, it cannot replace the manual filter method for diesel certification work.  相似文献   

11.
ABSTRACT

Fifty percent of homes tested for radon in Rock Island County, IL, have radon levels above the U.S. Environmental Protection Agency (EPA) action guideline of 4 picoCuries per liter (pCi/L) of air. Therefore, the county is classified by the EPA as Zone 1 on the EPA's Map of Radon Potential. Radon-resistant new construction (RRNC) strategies for new homes are recommended by the EPA in Zone 1 areas. One city in the county, East Moline, reduced the cost of building permits for contractors volunteering to build new homes incorporating modified passive RRNC. Forty-six of 124 new homes built with passive RRNC in the city were tested during this study. Only 27 of the homes tested were below 4-pCi/L, justifying the importance of testing the system to ensure levels are below the action guideline. To provide additional support to an argument in favor of changing city building codes to the required RRNC, 23 of the homes were also tested with the systems deactivated. After systems were deactivated, 73% of the homes had radon levels above the action guideline. Four homes were sampled for bioaerosols to evaluate if passive RRNC might impact other indicators of poor indoor air quality (IAQ). The results of the research will be discussed here.  相似文献   

12.
Abstract

A technique for comparing pesticide penetration through fabric was devised. It involved passing fabric swatches through a controlled spray system and measuring the pesticide residue transferring on and through the tested fabric. Six variations in fabric were selected for testing: 100% cotton woven chambray,

Scotch‐guard® treated chambray, Tyvek® , Crowntex® , and two variations of Gore Tex®. Guthion® (azinphos‐methyl) was chosen as the insecticide for controlled use in this experiment because of its widespread use and relatively high toxicity.

Gas Chromatographie analysis of the amount of Guthion® transferred through the outer fabric was made by the use of analysis of variance (ANOVA) and Duncan's multiple range test. The ANOVA for experiment replication showed no significant difference among the replications of each fabric. The treatment ANOVA was highly significant at the 0.01 level.

Duncan's multiple range test further analyzed the differences in the treatment, and three groups were found to be significantly different from each other. The two types of Gore Tex®, Tyvek® and Crowntex® comprised the group permitting the least penetration. Scotch‐guard® treated chambray followed, and untreated chambray allowed the greatest penetration.  相似文献   

13.
The U.S. Environmental Protection Agency's regulations require corrective action to be taken in response to a leaking underground storage tank (UST). Increasingly active state-run programs and the introduction of new cleanup technologies make UST corrective actions a multidisciplinary effort. The diversity of experience among personnel involved with this type of work has increased.

The EPA's Risk Reduction Engineering Laboratory has made its databases available to the public to help support this diverse audience. Its Computerized On-Line Information System (COLIS) allows for the quick and simple retrieval of data relating to UST incidents, as well as other hazardous-waste-related information. This paper describes the development and features of two important COLIS subsystems: the Case History File and the Library Search System. Sample search sessions are used to illustrate features of particular interest to personnel involved with UST sites.  相似文献   

14.
ABSTRACT

Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a “probable” human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as “likely to be carcinogenic to humans.” These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988–2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and “traditional diesel exhaust” (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.

IMPLICATIONS Based on the distinct physical and chemical properties of New Technology Diesel Exhaust (NTDE), it has become clear that findings from the health effects studies conducted on traditional DE (TDE) over the last 30 years have little relevance to NTDE, which is more similar to the exhaust from compressed natural gas (CNG) or gasoline engine emissions than to traditional TDE. Once sufficient health effects data are available for NTDE, it will thus be necessary to conduct new hazard and risk assessments for NTDE that are independent of the DE toxicological database acquired on emissions from pre–2007 diesel technology.  相似文献   

15.
Abstract

Artificially lead-contaminated soils with different lead contents (200, 450, 600, and 900 ppm) were thermally immobilized in both fixed-bed and fluidized-bed modes at moderate treating temperatures (less than 500 °C) for various retention times. Cement powder and brick powder were added to the artificially contaminated soils to enhance lead immobilization. Results indicate that increasing treating temperature and time increases the extent of lead immobilization, as determined by the U.S. Environmental Protection Agency's (U.S. EPA) Toxicity Characteristics Leachability Procedure (TCLP). The percentage of lead leached from the soil/ cement mixtures was in the range of less than 0.251%, compared with the range between 13.6% and 40.7% for the corresponding soil/brick mixtures. As the amount of brick dust added to the Pb-doped soil was increased, the specific Pb immobilization effectiveness increased from 0.0675 to 0.149 mg Pb/g brick (for the 20- and 50-gram brick addition, respectively). An increase in air flow rate from 2 to 40 L/min caused a slight decrease in the Pb leaching percentage from 14.96% to 11.59%. Both the Freundlich and Langmuir isotherms give a satisfactory fit (r = 0.945 ~ 0.998) for the data derived from a TCLP test of the thermally-treated soil samples (105 °C and 500 °C) that contained lead contaminants. Sorption of lead contaminants in soil and sorbent matrices was the primary type of chemisorption. The kinetic results indicated that the Pb-doped soil system was too complicated to be described by a simple calculation.  相似文献   

16.
ABSTRACT

Based on requirements under the Clean Air Act Amendments of 1990, most state vehicle inspection and maintenance (I/M) programs have, since 2002, replaced the tailpipe emission testing with the on-board diagnostic (OBD) II testing for 1996 model and newer vehicles. This test relies on the OBD II system to give the pass or fail result, depending on certain conditions that might cause the vehicle to emit pollution 1.5 times higher than the regulated standard. The OBD II system is a computer and sensors installed in the vehicle to monitor the emission control units and signal if there is any malfunction. As a vehicle ages, its engine, pollution control units, and OBD II system deteriorate. Because the OBD II system's durability directly influences the test outcome, it is important to examine the fleetwide trend in the OBD II test results in comparison with an alternative measure of identifying high emitting vehicles. This study investigates whether the validity and reliability of the OBD II test is related to the age of the OBD II system installed in the fleet. Using Atlanta's I/M testing records and remote sensing device (RSD) data collected during 2002–2005, this research establishes the convergent validity and interobserver reliability criteria for the OBD II test based on on-road emissions measured by RSDs. The study results show that older vehicles exhibit significantly lower RSD–OBD II outcome agreement than newer vehicles. This suggests that the validity and reliability of the OBD II test may decline in the older vehicle fleets. Explanations and possible confounding factors for these findings are discussed.

IMPLICATIONS This research demonstrates the potential worsening validity and reliability of the on-board diagnostic (OBD) II test in old vehicles. If the main source of low validity and reliability comes from the OBD II system malfunction, we expect this malfunctioning OBD II fleet will continue to grow in the future. If unchecked, the deterioration of OBD II system may impair the effort of the inspection and maintenance (I/M) program to identify high-emitting vehicles and the ultimate objective of reducing the air pollution from automobiles. This result is especially important in a regulatory context where technological and emissions standards dominate environmental policy and yet little attention is paid to the possible degradation of environmental monitors themselves.  相似文献   

17.
ABSTRACT

In this study the performance of the American Meteorological Society and U.S. Environmental Protection Agency Regulatory Model (AERMOD), a Gaussian plume model, is compared in five test cases with the German Dispersion Model according to the Technical Instructions on Air Quality Control (Ausbreitungsmodell gemäβ der Technischen Anleitung zur Reinhaltung der Luft) (AUSTAL2000), a Lagrangian model. The test cases include different source types, rural and urban conditions, flat and complex terrain. The predicted concentrations are analyzed and compared with field data. For evaluation, quantile-quantile plots were used. Further, a performance measure is applied that refers to the upper end of concentration levels because this is the concentration range of utmost importance and interest for regulatory purposes. AERMOD generally predicted concentrations closer to the field observations. AERMOD and AUSTAL2000 performed considerably better when they included the emitting power plant building, indicating that the downwash effect near a source is an important factor. Although AERMOD handled mountainous terrain well, AUSTAL2000 significantly underestimated the concentrations under these conditions. In the urban test case AUSTAL2000 did not perform satisfactorily. This may be because AUSTAL2000, in contrast to AERMOD, does not use any algorithm for nightly turbulence as caused by the urban heat island effect. Both models performed acceptable for a nonbuoyant volume source. AUSTAL2000 had difficulties in stable conditions, resulting in severe underpredictions. This analysis indicates that AERMOD is the stronger model compared with AUSTAL2000 in cases with complex and urban terrain. The reasons for that seem to be AUSTAL2000's simplification of the meteorological input parameters and imprecision because of rounding errors.

IMPLICATIONS This study contributes to the understanding of dispersion modeling and demonstrates the advantage of detailed meteorological data. It also helps air quality regulators and planners to identify the most appropriate model to use. It is indicated that AERMOD is more suitable for air quality planning and regulation, when all required meteorological information is available, because its predictions are mostly closer to field observations. Furthermore AUSTAL2000 predicted concentrations that showed a narrow range and triggered far less impacts from the source.  相似文献   

18.
ABSTRACT

An intercomparison study has been performed with six empirical ozone interpolation procedures to predict hourly concentrations in ambient air between monitoring stations. The objective of the study is to use monitoring network data to empirically identify an improved procedure to estimate ozone concentrations at subject exposure points. Four of the procedures in the study are currently used in human exposure models (nearest monitors daily mean and maximum, regression estimate used in the U.S. Environmental Protection Agency's (EPA) pNEM, and inverse distance weighting), and two are being evaluated for this purpose (kriging in space and kriging in space and time). The study focused on spatial estimation during June 1-June 5, 1996, with relatively high observed ozone levels over Houston, Texas. The study evaluated these procedures at three types of locations with monitors of varying proximity. Results from the empirical evaluation indicate that kriging in space and time provides excellent estimates of ozone concentrations within a monitoring network, while the more often used techniques failed to capture observed pollutant concentrations. Improved estimation of pollutant concentrations within the region, and thus at subject locations, should result in improved exposure modeling.  相似文献   

19.
Goal, Scope and Background Fragrance preparations or perfumes are used in an increasing variety of applications, as for example washing, cleansing, personal care products, consumer goods or in applications to modify indoor air. However, up to now, little is known to the general or scientific public about their chemical identity and the use pattern of single substances, not even for high production volume chemicals. Some toxicological data are published for a comparatively small number of substances with a focus on sensitisation and dermal effects, while other effects are neglected. Information on ecotoxicity and environmental fate are rare, especially for long-term exposure. Data for a detailed hazard and risk analysis are available in exceptional cases only. According to the current legal situation, fragrance industry is self-regulated, which means that pre-market risk evaluation is not required for most fragrances. Odour and the ability to smell play a major role for wildlife for all taxonomic groups. Reproductive and social behaviour, defence, communication and orientation depend on volatile compounds which can be identical to those used in fragrance preparations. Our interdisciplinary approach leads to the question of whether and, if so, to what extent anthropogenic fragrances may influence life and reproduction of organisms in the environment. Main Features Information from literature on use, exposure and biological effects was combined to analyse the state of knowledge. Following an overview of the amounts of fragrances used in different consumer products and their release into the environment, the roles of odours in nature are shown for a selection of compounds. Existing regulation was analysed to describe the data basis for environmental risk evaluation. Finally, recommendations for further action are derived from these findings. Results Three main results were elaborated: First, fragrance substances are continuously discharged in large amounts into the environment, especially via the waste water. Second, there are some indications of negative effects on human health or the environment, although the data basis is very thin due to the self regulation of the fragrance industry and the regulatory situation of fragrance substances. Third, many odoriferous substances used by man are identical to those which are signal substances of environmental organisms at very low concentrations, thus giving rise to specific mode of actions in the ecosystem. Recommendations For the adequate risk assessments of fragrances, test results on their unspecific as well as their specific effects as signal substances are needed. This would imply prioritisation methods and development of useful test methods for specific endpoints for appropriate risk assessments. Before a comprehensive testing and evaluation of results has been finished, a minimization of exposure should be envisaged. Eco-labelling of products containing acceptable fragrance ingredients could be a first step and provide consumers with the respective information. Transparency concerning the fragrance ingredients used and their biological potency will help to build up confidence between producers and consumers. Conclusions and Perspectives The interdisciplinary approach, bringing together chemical, biological, toxicological and ecotoxicological data with information provided by manufacturers and with legal and consumer aspects, offers new insights into the field of fragrance substances used in consumer products. The amounts and application fields of fragrance substances increases while fate and effects in the environment are hardly known. The current legal situation is not suited to elucidate the effects of fragrances on human health and the environment sufficiently, especially as it was shown that fragrances may play a considerable role in the ecosystem on the behaviour of organisms. According to the precautionary principle, the lack of knowledge should best be tackled by reducing exposure, especially for compounds such as fragrance substances where no ethical reasons object a substitution by less hazardous chemicals. ESS-Submission Editor: Dr. Thomas Knacker (th-knacker@ect.de)  相似文献   

20.
The chemical mass balance (CMB) receptor model is commonly used in source apportionment studies as a means for attributing measured airborne particulate matter (PM) to its constituent emission sources. Traditionally, error terms (e.g., measurement and source profile uncertainty) associated with the model have been treated in an additive sense. In this work, however, arguments are made for the assumption of multiplicative errors, and the effects of this assumption are realized in a Bayesian probabilistic formulation which incorporates a ‘modified’ receptor model. One practical, beneficial effect of the multiplicative error assumption is that it automatically precludes the possibility of negative source contributions, without requiring additional constraints on the problem. The present Bayesian treatment further differs from traditional approaches in that the source profiles are inferred alongside the source contributions. Existing knowledge regarding the source profiles is incorporated as prior information to be updated through the Bayesian inferential scheme. Hundreds of parameters are therefore present in the expression for the joint probability of the source contributions and profiles (the posterior probability density function, or PDF), whose domain is explored efficiently using the Hamiltonian Markov chain Monte Carlo method. The overall methodology is evaluated and results compared to the US Environmental Protection Agency's standard CMB model using a test case based on PM data from Fresno, California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号