首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The volatilization of DBCP from soils, as affected by the soil characteristics and application techniques, was studied in a laboratory experiment. The volatilization rate of DBCP applied in water was higher from sandy and silty loam soils than from clay soil. Water added after DBCP application acted as a soil cover, decreasing the volatilization rate. The results obtained with DBCP application in hexane to air‐dry soils, indicate that adsorption could be an important factor in reducing the volatilization losses.

Diffusion coefficients were calculated from the volatilization parameters, by using a simplified relationship between volatilization losses and diffusion through soil.  相似文献   

2.
ABSTRACT

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg?1, which is lower than in coals from this region (6.2 mg kg?1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5–20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.

IMPLICATIONS This work was carried out to analyze the pollution situation and environmental distribution of Sb in three important mines in Anhui Province of China. A detailed concentration analysis of Sb was used to indicate the anthropogenic source of human operation such as coal mining and depositing, coal cleaning, and electricity generation by coal power plants in the mine region. The investigation provides special useful information on the environmental behavior characteristics of Sb for environmental scientists and policy-makers.  相似文献   

3.
Abstract

A laboratory experiment was performed in order to evaluate the extent to which metam sodium (MS) applied at two different recommended rates and its degradation product, methyl isothiocyanate ( MITC ), affect soil respiration. Results suggest that MS degradation to MITC was complete within 4 hours and that MITC decomposed quickly in a few days, except in the soil containing high organic matter where it was still present after 15 days. Following the addition of MS, a lag phase appeared in CO2‐C evolution in the soil. It was longer for the higher dose of MS added and for the two soils with low organic C content. The dynamics of the process was described by the Bonde and Rosswall model and by the Gompertz RS E model for the untreated and the MS‐treated soils, respectively.  相似文献   

4.
Abstract

Copper (Cu) input to agricultural soils results from Cu containing pesticides and/or that in soil amendments, such as manure or sewage sludge. Soil and soil solution properties influence the adsorption and desorption of Cu by the soil, which in turn determines its plant availability and/or phytotoxicities. Effects of different anion enrichment in the equilibrium solution on Cu adsorption by different soils (pH range of 6.2–9.9) were investigated in this study over a range of Cu concentrations. With Cu concentrations in the range of 0–100 mg L?1 in the equilibration solution, 95–99% of applied Cu was adsorbed by all three soils. The adsorption of Cu was similar regardless of using either 0.01 M CaCl2 or Ca(NO3)2 as the equilibration solution. When the Cu concentration in the equilibration solution was further increased in the range of 500–2000 mg L?1, the adsorption of Cu decreased from 60 to 24% of applied Cu in two soils with pH 6.2–7.9. In a high pH soil (pH = 9.9), the Cu adsorption decreased from 77 to 34%. Addition of incinerated sewage sludge (ISS) to a Palouse silt loam soil (pH = 6.2) increased the Cu adsorption as compared to that by unamended soil. This was, in part, due to an increase in the soil suspension pH with ISS amendment.  相似文献   

5.
Abstract

Spinosad is a natural product with biological activity against a range of insects including lepidoptera. It is comprised of two major components namely spinosyns A and D. The degradation of spinosad in soil under aerobic conditions was investigated using two U.S. soils (a silt loam and a sandy loam) which were treated with either 14C‐spinosyn A or ‐spinosyn D at a 2X use rate of 0.4mg/kg soil for spinosyn A and 0.1mg/kg for spinosyn D. Further samples of soil were pre‐sterilised prior to treatment in order to establish whether spinosyns A and D degrade abiotically. Flasks of treated soil were incubated in the dark at 25°C for up to one year after treatment.

HPLC and LC‐MS of soil extracts confirmed that the major degradation product of spinosyn A was spinosyn B, resulting from demethylation on the forosamine sugar. Other dégradâtes were hydroxylation products of spinosyns A and B, with hydroxylation probably taking place on the aglycone portion of the molecule. Half lives were similar for both spinosyns and were in the range 9–17 days, with longer half lives in the pre‐sterilised soils (128–240 days) suggesting that degradation was largely microbial.  相似文献   

6.
Appendix     
Abstract

The interaction of glyphosate [N‐(phosphonomethyl)‐glycine] with four typical European soils is reported. Results of adsorption and desorption isotherms show that the interaction of glyphosate with these soils was mainly related to content of iron and aluminium amorphus hydroxides. Moreover, it was found that the presence of divalent cations in 2: 1 clay minerals also contribute to glyphosate adsorption. The S‐type form of the adsorption isotherms revealed the existence of two different binding sites. These were exchangeable cations at low herbicide concentration and Fe and Al at higher glyphosate concentrations. The K maximum values of adsorption provided by the linear form of the Langmuir equation were found to be more consistent with soil parameters than those calculated by the Freundlich equation. The order of desorption from the soils was the reverse of that found for adsorption. Moreover, desorption varied from around 15 to 80% of the adsorbed herbicide according to the soil characteristics. This indicated that glyphosate adsorption on soils is far from being permanent and leaching to lower soil horizons with limited biological activity may occur.  相似文献   

7.
Abstract

Interaction of lindane with silty loam and silty clay loam soils was studied in batch tests at 23, 30 and 37° C. Sorption experiments were carried out at four concentrations and for varying time of contact upto 72 hours. This was followed by desorption studies. No desorption was observed. The sorption data was analysed using sorption equations and evaluating the thermodynamic parameters. The sorption was found to be predominantly entropic in nature and a combined effect of adsorption and chemisorption. The effect of organic matter and other chemical and mineralogical constituents of soils has also been discussed. The sorption with single application of lindane with the two soil types indicates that the insecticide is less likely to reach groundwater.  相似文献   

8.

The effect of one organic amendment consisting of an urban waste compost (UWC) was assessed on the sorption properties of the herbicide 2,4-D on four soils of different physicochemical characteristics. The soils chosen were a Typic Haphorthod (ST), a Typic Endoaquept (SR), an Entic Pelloxerert (TO), and a Typic Eutrochrept (AL). Adsorption experiments were performed on the original soils, and on mixtures of these soils with UWC at a rate of 6.25% (w/w). These mixtures were used just after preparation, and after aging for 8 and 25 weeks. 2,4-D adsorption was the highest on ST soil, whereas the lowest adsorption was for SR soil. This behavior is related to the high amount of organic matter (OM) and amorphous iron and aluminum oxides content on soil ST, whereas soil SR had the lowest OM content and specific surface area of the soils of this study. Addition of exogenous OM to soils caused an increase in the 2,4-D adsorption by three of the soils treated with UWC, with the only exception being ST soil, due to an observed decrease in its specific surface area. The adsorbed amounts of the herbicide on aged organic fertilized soils diminished in three of the amended soils, but was still greater than on unamended soils. In contrast, the ST soil showed the largest adsorption for unamended soil.  相似文献   

9.
Abstract

Effects of the herbicide metsulfuron‐methyl on soil microorganisms and their activities in two soils were evaluated under laboratory conditions. Measurements included their populations, soil respiration, and microbial biomass. In the clay soil, bacterial populations decreased with increasing concentration of metsulfuron‐methyl during the first 9 days of incubation but exceeded that of the control soil from day 27 onward. In the sandy loam soil, the herbicide reduced bacterial populations during the first 3 days after application, but these increased to the level of untreated controls after 9 days’ incubation. Fungal populations in both soils increased with increasing metsulfuron‐methyl concentrations, especially in the sandy loam soil. CO2 evolution was stimulated in both soils in the presence of the herbicide initially, but decreased during days 3 to 9 of the incubation period before increasing again afterward. The presence of metsulfuron‐methyl in the soil increased microbial biomass, except in sandy loam soil at the first day of incubation.  相似文献   

10.
ABSTRACT

This study evaluates the dissipation of terbuthylazine, metolachlor, and mesotrione at different depths in soils with contrasting texture. The field trial was conducted at the Padua University Experimental Farm, north-east Italy. The persistence of three herbicides was studied in three different soil textures (clay soil, sandy soil, and loamy soil) at two depths (0–5 and 5–15 cm). Soil organic carbon content was highest in the clay (1.10%) followed by loam (0.67%) and sandy soil (0.24%); the pH of soils was sub-alkaline. Terbuthylazine, metolachlor, and mesotrione were applied on maize as a formulated product (Lumax®) at a dose of 3.5 L ha?1. Their dissipation in the treated plots was followed for 2 months after application. The concentrations of herbicides were analyzed by liquid chromatography-mass spectrometry. The dissipation of terbuthylazine, metolachlor, and mesotrione could be described by a pseudo first-order kinetics. Terbuthylazine showed the highest DT50, followed by metolachlor and mesotrione. Considering the tested soil, the highest DT50 value was found in clay soil for terbuthylazine and metolachlor, whereas for mesotrione there was no difference among soils. Significant differences were found between the two soil depths for terbuthylazine and metolachlor, whereas none were found for mesotrione. These results suggest that soil texture and depth have a strong influence on the dissipation of terbuthylazine and metolachlor, whereas no influence was observed on mesotrione because of its chemical and physical properties.  相似文献   

11.
Abstract

The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r 2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10–15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.  相似文献   

12.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

13.
Abstract

The persistence of the methylcarbamate pesticide carbaryl was studied in four soils under flooded conditions. A substantial portion of the pesticide was recovered from all soils even after 15 days of its application, with the recovery ranging from 37% in an alluvial soil to 73% in an acid sulfate soil. The degradation of carbaryl was more rapid under flooded conditions than under nonflooded conditions. A bacterium, Pseudomonas cepacia, isolated from a flooded soil amended with a related methylcarbamate pesticide carbofuran, degraded carbaryl in a mineral medium supplemented with yeast extract.  相似文献   

14.
Abstract

The degradation of 14C‐chlorpyrifos and its hydrolysis product, 3,5,6‐trichloro‐2‐pyridinol (TCP), was investigated in soil in laboratory experiments. Between 12 and 57% of the applied chlorpyrifos persisted in a variety of agricultural soils after a 4‐week incubation. Concentrations of TCP present in these soils ranged from 1 to 34% of the applied dose. Two patterns of persistence were observed. In some soils, significant quantities of TCP and soil‐bound residues were produced, but little 14CO2. In other soils, neither TCP nor soil‐bound residues accumulated, but large quantities of 14CO2 were evolved. Direct treatment of fresh samples of each of these soils with 14C‐TCP resulted in rapid mineralization of TCP to 14CO2 only in those soils in which TCP had not accumulated after chlorpyrifos treatment. The rapid mineralization of TCP in these soils was microbially mediated, but populations of soil microorganisms capable of using TCP as a sole carbon‐energy source were not detected.  相似文献   

15.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

16.

A greenhouse study was conducted to evaluate the potential use of olive-cake ash as a soil amendment, using pepper (Capsicum annuum, L. cv Italian sweet). Three soils of different pH (acidic, neutral and calcareous) were used. Treatments included a control (no fertilizer application), NPK fertilizer, and two ash-application rates that provided a complete dose (equivalent to the K2O amount in the fertilizer) and a half dose (equivalent to half the K2O amount in the fertilizer), respectively. The ash was effective in raising soil pH. Ash treatments increased the pepper (stems and leaves) dry matter yield over control; although these increases were lower than treatment including NPK. Application of ash significantly increased leaf P concentration and AB-DTPA extractable P in soil, especially in the acidic and neutral soils. Leaf K concentrations and readily and slowly available K forms in soils were affected positively by the addition of the ash. These results demonstrate that ash from the combustion of wet olive cake can be used as a beneficial organic soil amendment.  相似文献   

17.
Abstract

The effects of the herbicide triclopyr (3,5,6‐trichloro‐2‐pyridinyloxyacetic acid) on the mineralization of 2,4‐D (2,4‐dichlorophenoyxacetic acid) in two soils which differed in their histories of prior exposure to the two herbicides were investigated. The relative effects of triclopyr on 2,4‐D mineralization and most probable numbers of 2,4‐D degraders were dependent upon the soil. Triclopyr was shown to increase 2,4‐D mineralization rates in a soil which had been exposed to both 2,4‐D and triclopyr, but decreased the mineralization rate of 2,4‐D and inhibited the increase of most probable numbers of 2,4‐D degraders in a soil that had not been directly exposed to either herbicide.  相似文献   

18.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

19.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   

20.
Abstract

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofiiran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofiiran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofiiran when compared to untreated soils. Disappearance rates of [14C‐URL (uniformly ring labeled)] carbofiiran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号