首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The fate of 14C-labeled difloxacin (14C-DIF) was studied in time course experiments after application on soil (Ap horizon of silt loam) and amendment of authentic DIF containing pig manure (146 mL kg?1; 4.17 MBq kg?1; 0.85 mg kg?1) or water (124 mL kg?1; 0.42 MBq kg?1; 0.09 mg kg?1) for 56 and 120 days of incubation, respectively.

Mineralization of 14C-DIF was below 0.2% in both experiments after 56 days or 120 days. In the course of the experiments, portions of extractable radioactivity (Accelerated Solvent Extraction (ASE); acetonitrile-water) decreased to 19–21% depending only little on manure amendment. Non-extractable residues of 14C-DIF increased to 70–74% after 56 days and 120 days, respectively, and therefore were the main route of 14C-DIF in soil. According to radioanalytical HPLC and LC-MS/MS, only the parent compound was found in all extracts over the whole time of the experiment. According to fractionation of the non-extractable residues (NER) into particle size fractions, 14C portions were associated to the water used for fractionation, the silt and clay fractions, whereas no radioactivity was detected in the sand fraction. The majority of 14C was found within the clay fractions.

Fractionation of humic components showed that radioactivity derived from 14C-DIF was associated with humic acids, fulvic acids, humins and minerals and very little with soluble, non-humic HCl fraction. The highest portions of radioactivity were found in the fulvic acid fraction. Results obtained by size exclusion chromatography (SEC) of the purified fulvic acids were similar for every sample analyzed. One large portion of 14C co-eluted with fulvic acids of a molecular weight below 910 g mol?1. Both fractionation methods demonstrated that the parent compound DIF or initial metabolites were rapidly integrated into humic materials and, thus, were major components of NER.  相似文献   

2.
The fate of (14)C-labeled sulfadiazine ((14)C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (A(p) horizon of loamy sand, orthic luvisol; A(p) horizon of silt loam, cambisol) amended with fresh and aged (6 months) (14)C-manure [40 g kg(-1) of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with (14)C-SDZ. Mineralization of (14)C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable (14)C (ethanol-water, 9:1, v/v) decreased with time to 4-13% after 218 days of incubation with fresh and aged (14)C-manure and both soils. Non-extractable residues were the main route of the fate of the (14)C-SDZ residues (above 90% of total recovered (14)C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the (14)C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl(2) solution) also decreased with increasing incubation period (5-7% after 218 days). Due to thin-layer chromatography (TLC), 500 microg of (14)C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh (14)C-manure, and about 50 microg kg(-1) after 218 days. Bioavailable (14)C-SDZ portions present in the CaCl(2) extracts were about 350 microg kg(-1) with amendment. Higher concentrations were initially detected with aged (14)C-manure (ethanol-water extracts: 1,920 microg kg(-1); CaCl(2) extracts: 1,020 microg kg(-1)), probably due to release of (14)C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the (14)C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble (14)C-SDZ residues contained in (14)C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   

3.
The fate of 14C-labeled herbicide prosulfocarb was studied in an agricultural soil and in a sediment-water system, the sediment part of which was derived from Yangtze Three Gorges Reservoir, China. Time-course studies were performed for 28 d and 49 d, respectively. Main transformation routes of 14C-prosulfocarb were mineralization to 14CO2 and formation of nonextractable residues amounting to 12.13% and 10.43%, respectively, after 28 days (soil), and 9.40% and 11.98%, respectively, after 49 d (sediment-water system). Traces of prosulfocarbsulfoxide were detected by means of TLC, HPLC, and LC-MS; other transformation products were not found. Initial extraction of soil assays using 0.01 M CaCl2 solution showed that the bioavailability of the herbicide was considerably low; immediately after application (0.1 d of incubation), only 4.78% of applied radioactivity were detected in this aqueous fraction. DT50 values of 14C-prosulfocarb estimated from radio-TLC and -HPLC analyses were above 28 d in soil and ranged between 29 d and 49 d in the sediment-water system. Partitioning of 14C from water to sediment phase occurred with DT50 slightly above 2 d. With regard to the sediment-water system, adsorption occurred with log Koc = 1.38 (calculated from 2 day assays) and 2.35 (49 d assays). As similarly estimated from portions of 14C found in CaCl2 extracts of the 0.1 d assays, 14C-prosulfocarb's log Koc in soil was 2.96. With both experiments, similar portions of nonextractable radioactivity were associated with all soil organic matter fractions, i.e. nonhumics, fulvic acids, humic acids, and humin/minerals. Throughout all sample preparation, the experiments were severely impaired by losses of radioactivity especially with concentration of samples containing water in vacuo. All findings pointed to volatility of parent prosulfocarb in presence of water rather than volatility of transformation products. According to literature data, this behavior of prosulfocarb was not expected, though volatility was demonstrated under field conditions.  相似文献   

4.
The metabolic fate of 14C-phenyl-labeled herbicide clodinafop-propargyl (CfP) was studied for 28 days in lab assays using a soil from Germany (Ap horizon, silt loam, and cambisol). Mineralization amounted to 12.40% of applied 14C after 28 days showing a distinct lag phase until day 7 of incubation. Portions of radioactivity extractable by means of 0.01 M CaCl2 solution (bioavailable fraction) decreased rapidly and were 4.41% after 28 days. Even immediately after application, only 57.31% were extracted with the aqueous solvent. Subsequent extraction using accelerated solvent extraction (ASE; acetonitrile/water 4:1, v/v) released 39.91% of applied 14C with day 0 and 26.16% with day 28 of incubation from the samples. Non-extractable portions of radioactivity thus, increased with time amounting to 11.99% (day 0) and 65.00% (day 28). A remarkable increase was observed between 14 and 28 days correlating with the distinct increase of mineralization. No correlation was found throughout incubation with general microbial activity as determined by DMSO reduction. Analysis of the CaCl2 and ASE extracts by radio-TLC, radio-HPLC and GC/MS revealed that CfP was rapidly cleaved to free acid clodinafop (Cf), which was further (bio-) transformed; DT50 values (based on radio-TLC detection of the parent compound) were far below 1 day (CfP) and about 7 days (Cf). TLC analysis pointed to 2-(4-hydroxyphenoxy)-propionic acid as further metabolite. Due to fractionation of non-extractable residues, most of the 14C was associated with fulvic and humic acids, portions in humin fractions and non-humics were moderate and low, respectively. Using a special strategy, which included pre-incubation of the soil with CfP and then mineralization of 14C-CfP as criterion, a microorganism was isolated from the soil examined. The microorganism grew using CfP as sole carbon source with concomitant evolution of 14CO2. The bacterium was characterized by growth on commonly used carbon sources and by 16S rDNA sequence analysis. The sequence exhibited high similarity with that of Rhodococcus wratislaviensis (99.56%; DSM 44107, NCIMB 13082).  相似文献   

5.
Abstract

Residue disappearance and leaching of 14C‐allyl‐alcohol from different soils were studied in laboratory experiments. Additionally, the uptake of residues by lettuce and carrots was investigated in the greenhouse. In laboratory experiments, residue disappearance and leaching from soils was correlated negatively to the organic matter content. In greenhouse experiments with a sandy loam soil at an application rate normally used in practice, an average of 12.5 % of the applied radioactivity was recovered after an eight day interval between application and sowing. Furthermore, an average of 8 % (sum in soil and plants) of the applied radioactivity was recovered after lettuce or carrot growing. Uptake of residues was higher by carrots than by lettuce, and higher by lettuce roots than by lettuce tops. No bioaccumulation was observed. The residues in soils and plants were, to a high percentage, unextractable and, to a smaller extent, fully water‐soluble products. Unchanged allylalcohol could not be detected by the analytical methods used.  相似文献   

6.
Canola plants were treated with 14C- prohiofos under conditions simulating local agricultural practices. 14C-residues in seeds were determined at different time intervals. At harvest time about 32 % of 14C-activity was associated with oil. The methanol soluble 14C-residues accounted for 12 % of the total seed residues after further seeds extraction, while the cake contained about 49 % of the total residues. About 69 % of the 14C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as prothiofos oxon, O-ethyl phosphorothioate and O-ethyl S-propyl phosphorothioate, besides one unknown compound. While methanol extract revealed the presence of despropylthio prothiofos and O-ethyl phosphoric acid as free metabolites acid hydrolysis of the conjugated metabolites in the methanol extract yielded 2, 4-dichlorophenole which was detected by color. When rats were fed the extracted cake for 72 hours, the bound residues were found to be bioavailable. The main excretion route was via the expired air (42 %), while the 14C-residues excreted in urine and feces were 30 % and 11 %, respectively. The radioactivity detected among various organs accounted to 7.5 %.Chromatographic analysis of urine indicated the presence of prothiofos oxon, O-ethyl phosphoric acid and 2, 4-dichlorophenole as main degradation products of prothiofos in free and conjugated form.  相似文献   

7.
Sunflower plants were treated with 14C-chlorpyrifos under conditions simulating local agricultural practice. Residues present in the oil, methanol extract and cake of the treated sunflower seeds were 7.2, 2.8, and 12 ppm, respectively. When rats fed on sunflower cake containing bound residues for three days, the animals eliminated 46 % of the radioactivity in urine, 25 % in feces and 10 % in the expired air. A further bioavailable amount of 8 % was found in selected organs indicating that the bound residues were highly bioavailable. Chromatographic analysis of urine extract revealed the presence of the parent compound, its oxon, desethyl chlorpyrifos and desethyl chlorpyrifos oxon as free metabolites in addition to a conjugated metabolite. It was liberated by acid hydrolysis and identified as 3,5,6-trichloro-2-hydroxypyridine. Bound residues were found to have biological effects such as inhibition of rat plasma ChE, elevations of liver parameters (ALT, AST, and ALP), decrease in total protein and albumin content suggesting a hepatotoxic potential. A significant increase in the values of creatinine, urea, cholesterol, triglycerides and significant decrease in Catalase and Glutathion-S-Transfrase were observed in treated rats.  相似文献   

8.
Extracellular, oxidative soil enzymes like monophenol oxidases and peroxidases play an important role in transformation of xenobiotics and the formation of organic matter in soil. Additionally, these enzymes may be involved in the formation of non-extractable residues (NERs) of xenobiotics during humification processes. To examine this correlation, the fate of the fungicide 14C metalaxyl in soil samples from Ultuna (Sweden) was studied. Using different soil sterilization techniques, it was possible to differentiate between free, immobilized, and abiotic (“pseudoenzyme”-like) oxidative activities. A correlation between the formation of metalaxyl NER and soil organic matter content, biotic activities, as well as extracellular phenoloxidase and peroxidase activities in the bulk soil and its particle size fractions was determined. Extracellular soil-bound enzymes were involved in NER formation (up to 8% of applied radioactivity after 92 days) of the fungicide independently from the presence of living microbes and different distributions of the NER in the soil humic subfractions.  相似文献   

9.
Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, 14C- and 13C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied 14C was mineralized. The bioavailable, water extractable portion was low (9 % of applied 14C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied 14C was incorporated into organo-clay complexes as NER, whereas 9 % of applied 14C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the clay fraction to other soil fractions was observed, implying a dynamic behavior of incorporated residues, which may result in bioaccessibility of the NER of nonylphenol.  相似文献   

10.
A loamy clay soil containing unextractable 14C-ring labeled atrazine residues was incubated in microcosms under abiotic and biotic conditions. The mineralization activity of the soil microflora was evaluated by the release of total CO2 and 14C02. After 63 days of sample incubation the total organic carbon mineralization was of 1.71%, that of 14C-residues was of 0.72% of the initial radioactivity. No direct relationship was established between the mineralization of atrazine residues and the global mineralization. The contribution of soil microorganisms in the release of 14C-residues was weak. The availability of non-extractable residues was mainly controlled by physico-chemical factors. The low value of the reextractability rate and the distribution of bound residues during the soil sample incubation shown the active role of organic matter in detoxification procedure. Ninety percent of the residues remained bound after 63 days of incubation and were thus, potentially available without biocide activity.

The fractionation of soil organic matter allowed to specify the distribution of bound residues within the organic compartments. After a long-stay of pesticides in soils, approximately 65% of bound residues were associated with humin.  相似文献   


11.
Abstract

The degradation of [phenyl‐U‐14C]methabenzthiazuron (MBT) and formation of bound residues in the surface soil of an orthic luvisol were studied under constant climatic conditions (20°C, 40 % of maximum water holding capacity). In two treatments (with and without preincubation in the soil) maize straw was amended at a rate of 1.5 g/100 g dry soil in addition to the application of MBT. The mineralization of uniformly labeled maize straw was studied simultaneously. In additional flasks, MBT was incubated at 0, 10 and 30°C with and without addition of maize straw.

The turnover of the amended maize straw led to an enhanced dissipation of MBT which was mainly due to the formation of bound residues. This corresponded to a higher microbial activity in the soil after straw amendment and the intensive mineralization of the radiolabeled maize straw. About 2–3 % of the applied radioactivity from the radiolabeled maize straw was measured in the soil microbial biomass 10 and 40 days after application whereas 14C from MBT was only incorporated into soil microbial biomass in the treatments with straw amendment.

Within the bound residue fractions relatively more radioactivity was measured in fulvic and humic acids after straw amendment. Increasing temperatures promoted the dissipation of MBT and the formation of bound residues in both treatments, but without amendment of maize straw these effects were far less pronounced. The laboratory scale degradation experiment led to similar results as were found in a corresponding lysimeter study. Differences that were observed could be explained by different temperature regimes of the experiments and time of aging in soil.  相似文献   

12.
Abstract

Mass balance and fate of atrazine‐ 14C and pentachlorophenol‐ 14C (PCP‐ 14C) were studied in short‐term tests in a closed aerated laboratory soil‐plant system, using two concentrations in soil and two plant species, as well as under outdoor conditions for one vegetation period. In the laboratory, for both pesticides bioaccu‐mulation factors of radiocarbon taken up by the roots into plants were low. They were higher for lower (1 ppm) than for higher soil concentrations (6 ppm for atra‐zine, 4 ppm for pentachlorophenol) and varied with the plant species. Mineralization to 14CO2 in soil was negatively related to soil concentration only for PCP‐ 14C. Conversion rates in soil including the formation of soil‐bound residues were higher for the lower concentrations of both pesticides than for the higher ones; conversion rates in plants were species‐dependent. In 14 terms of CO2 formation and of conversion rates, PCP was less persistent in soil than was atrazine. For both pesticides, laboratory data on conversion and mineralization gave a rough prediction of their persistence in soil under long‐term outdoor conditions, whereas bio‐accumulation factors in plants under long‐term outdoor conditions could not be predicted by short‐term laboratory experiments.  相似文献   

13.
The dissipation of (O-methyl-14C) monocrotophos and U-ring labelled 14C-carbaryl was monitored for over two years in absence and presence of other insecticides using in situ soil columns. The dissipation of 14C-monocrotophos from soil treated with methomyl and carbaryl showed a faster rate of downward movement than in a control column tagged with the labelled insecticide alone. The same trend was observed in experiments with 14C-carbaryl that dissipated more readily in soil treated with non-labelled monocrotophos and methomyl. In the presence of other insecticides the percentage of bound residues was generally lower than in control experiments. The bound residues at the top of the column are released at a low rate under conditions prevailing in the field. The overall time required for dissipation of 50% of monocrotophos and carbaryl (t50) as estimated from control experiment was approximately 20 and 24 weeks, respectively. The data indicate that repeated applications of pesticides might enhance the release of 14C-bound residues.  相似文献   

14.
The metabolic fate of 14C-phenyl-labeled herbicide clodinafop-propargyl (14C-CfP) was studied for 28 days in lab assays using a sediment–water system derived from a German location. Mineralization was 5.21% of applied 14C after 28 days exhibiting a distinct lag phase until day 14 of incubation. Portions of radioactivity remaining in water phases decreased at moderate rate to 18.48% after 28 days; 62.46% were still detected in water after 14 days. Soxhlet extraction of the sediment using acetonitrile released 35.56% of applied 14C with day 28, while 33.99% remained as non-extractable residues. A remarkable increase of bound 14C was observed between 14 and 28 days correlating with the distinct increase of mineralization. No correlation was found throughout incubation with microbial activity of the sediment as determined by dimethyl sulfoxide reduction. Dissolved oxygen and pH value of water phases remained almost constant for 28 days. Analyses of Soxhlet extracts of the sediment and ethyl acetate extracts of water phases by radio-TLC and radio-HPLC revealed that CfP was rapidly cleaved to free acid clodinafop (Cf), which was further (bio-) transformed. DT50 values (based on radio-HPLC) were below 1 day (CfP) and slightly above 28 days (Cf). Further metabolites were not detected. Fractionation of humic and non-humic components of the sediment demonstrated that CfP's non-extractable residues were predominantly associated with fulvic acids up to 14 days of incubation (3.36%), whereas after 28 days, the majority of radioactivity was found in the humin/mineral fraction (13.30% of applied 14C). Due to high-performance size-exclusion chromatography of the fulvic acids fraction derived from assays incubated for 28 days, this portion of 14C was firmly, possibly covalently bound to fulvic acids and did not consist of CfP or Cf. Using an isolation strategy comprising preincubation of sediment with CfP and mineralization of 14C-CfP as criterion, a microorganism was isolated from the sediment examined. It grew on 14C-CfP as sole carbon source with evolution of 14CO2. The bacterium was characterized by growth on commonly used carbon sources and 16S rDNA sequence analysis. Its sequence exhibited high similarity with that of Nocardioides aromaticivorans strain H-1 (98.85%; DSM 15131, JCM 11674).  相似文献   

15.
The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER.  相似文献   

16.
Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day?1 in soil with 16% A to 2.89E-02 day?1 in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.  相似文献   

17.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

18.
The metabolism of 14C-clodinafop-propargyl (CfP) was examined in cell cultures of wheat (Triticum aestivum L. cv. ‘Heines Koga II’) and tobacco (Nicotiana tabacum L.). Besides the non-transgenic tobacco culture, cultures transformed separately with cDNA of human cytochrome P450-monooxygenases (P450s) CYP1A1, CYP1A2, CYP3A4, CYP2B6 and CYP2C19 were examined. Experiments with wheat were executed in the presence and absence of safener cloquintocet-mexyl (CqM). After 48 h of incubation, only about 10% of applied 14C was found in media (both tobacco and wheat). Non-extractable residues of 14C-CfP in wheat cells were 16.54% (without CqM) and 30.87% (with CqM). In all tobacco cultures, 82.41–92.46% of applied radioactivity was recovered in cell extracts. In contrast to wheat, non-extractable residues amounted only to 1.50–2.82%. As determined by radio-thin layer chromatography (TLC) and -high-performance liquid chromatography (HPLC), the parent CfP was not found in the cell extracts of wheat; in tobacco cell extracts, only traces of CfP were detected. After a hydrolysis of assumed carbohydrate conjugates of CfP derived polar 14C-labeled compounds, TLC and HPLC analysis showed that in wheat, a more complex pattern of metabolites of CfP were observed as compared to all tobacco cultures. In hydrolysates resulting from wheat, the identity of three primary products was confirmed by means of GC-EI-MS: free acid clodinafop (Cf), hydroxy-Cf hydroxylated at the pyridinyl moiety, and 4-(5-chloro-3-fluoropyridin-2-yloxy)phenol. In hydrolysates derived from all tobacco cultures, main metabolite was Cf besides only traces of further unidentified products. Differences among the different tobacco cultures (non-transgenic, transgenic) did not emerge. According to kinetics of disappearance of primary metabolite Cf as well as formation of polar soluble products and non-extractable residues, metabolization of CfP proceeded at a noticeably higher rate in wheat cells treated with safener CqM than in cells without CqM treatment. Thus, these results indicated a stimulation of CfP's metabolism by CqM, although metabolic profiles observed in CqM treated and non-treated cells (after hydrolysis) were qualitatively similar. The findings obtained from all tobacco cultures suggested that with the exception of ester cleavage to Cf, CfP cannot be metabolized by tobacco itself or by the human P450s examined.  相似文献   

19.
The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEMZn-AVS > 0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the foodexposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment + food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号